Function petgraph::algo::dijkstra [−][src]
pub fn dijkstra<G, F, K>(
graph: G,
start: G::NodeId,
goal: Option<G::NodeId>,
edge_cost: F
) -> HashMap<G::NodeId, K> where
G: IntoEdges + Visitable,
G::NodeId: Eq + Hash,
F: FnMut(G::EdgeRef) -> K,
K: Measure + Copy,
[Generic] Dijkstra’s shortest path algorithm.
Compute the length of the shortest path from start
to every reachable
node.
The graph should be Visitable
and implement IntoEdges
. The function
edge_cost
should return the cost for a particular edge, which is used
to compute path costs. Edge costs must be non-negative.
If goal
is not None
, then the algorithm terminates once the goal
node’s
cost is calculated.
Returns a HashMap
that maps NodeId
to path cost.
Example
use petgraph::Graph; use petgraph::algo::dijkstra; use petgraph::prelude::*; use std::collections::HashMap; let mut graph : Graph<(),(),Directed>= Graph::new(); let a = graph.add_node(()); // node with no weight let b = graph.add_node(()); let c = graph.add_node(()); let d = graph.add_node(()); let e = graph.add_node(()); let f = graph.add_node(()); let g = graph.add_node(()); let h = graph.add_node(()); // z will be in another connected component let z = graph.add_node(()); graph.extend_with_edges(&[ (a, b), (b, c), (c, d), (d, a), (e, f), (b, e), (f, g), (g, h), (h, e) ]); // a ----> b ----> e ----> f // ^ | ^ | // | v | v // d <---- c h <---- g let expected_res: HashMap<NodeIndex, usize> = [ (a, 3), (b, 0), (c, 1), (d, 2), (e, 1), (f, 2), (g, 3), (h, 4) ].iter().cloned().collect(); let res = dijkstra(&graph,b,None, |_| 1); assert_eq!(res, expected_res); // z is not inside res because there is not path from b to z.