1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
// Copyright 2013-2014 The Algebra Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Fundamental algebraic structures.
//!
//! For most applications requiring an abstraction over the reals, `Real`
//! should be sufficient.
//!
//! ## Algebraic properties
//!
//! The goal of algebraic structures is to allow elements of sets to be combined together using one
//! or several operators. The number and properties of those operators characterize the algebraic
//! structure. Abstract operators are usually noted `∘`, `+`, or `×`. The last two are preferred
//! when their behavior conform with the usual meaning of addition and multiplication of reals.
//! Let `Self` be a set. Here is a list of the most common properties those operator may fulfill:
//!
//! ~~~notrust
//! (Closure)       a, b ∈ Self ⇒ a ∘ b ∈ Self,
//! (Divisibility)  ∀ a, b ∈ Self, ∃! r, l ∈ Self such that l ∘ a = b and a ∘ r = b
//! (Invertibility) ∃ e ∈ Self, ∀ a ∈ Self, ∃ r, l ∈ Self such that l ∘ a = a ∘ r = e
//!                 If the right and left inverse are equal they are usually noted r = l = a⁻¹.
//! (Associativity) ∀ a, b, c ∈ Self, (a ∘ b) ∘ c = a ∘ (b ∘ c)
//! (Neutral Elt.)  ∃ e ∈ Self, ∀ a ∈ Self, e ∘ a = a ∘ e = a
//! (Commutativity) ∀ a, b ∈ Self, a ∘ b = b ∘ a
//! ~~~
//!
//! ## Identity elements
//!
//! Two traits are provided that allow the definition of the additive and
//! multiplicative identity elements:
//!
//! - `IdentityAdditive`
//! - `IdentityMultiplicative`
//!
//! ## AbstractGroup-like structures
//!
//! These structures are provided for both the addition and multiplication.
//!
//! These can be derived automatically by `alga_traits` attribute from `alga_derive` crate.
//!
//! ~~~notrust
//!            AbstractMagma
//!                 |
//!         _______/ \______
//!        /                \
//!  divisibility       associativity
//!       |                  |
//!       V                  V
//! AbstractQuasigroup AbstractSemigroup
//!       |                  |
//!   identity            identity
//!       |                  |
//!       V                  V
//!  AbstractLoop       AbstractMonoid
//!       |                  |
//!  associativity     invertibility
//!        \______   _______/
//!               \ /
//!                |
//!                V
//!          AbstractGroup
//!                |
//!          commutativity
//!                |
//!                V
//!      AbstractGroupAbelian
//! ~~~
//!
//! The following traits are provided:
//!
//! - (`Abstract`|`Additive`|`Multiplicative`)`Magma`
//! - (`Abstract`|`Additive`|`Multiplicative`)`Quasigroup`
//! - (`Abstract`|`Additive`|`Multiplicative`)`Loop`
//! - (`Abstract`|`Additive`|`Multiplicative`)`Semigroup`
//! - (`Abstract`|`Additive`|`Multiplicative`)`Monoid`
//! - (`Abstract`|`Additive`|`Multiplicative`)`Group`
//! - (`Abstract`|`Additive`|`Multiplicative`)`GroupAbelian`
//!
//! ## Ring-like structures
//!
//! These can be derived automatically by `alga_traits` attribute from `alga_derive` crate.
//!
//! ~~~notrust
//!      GroupAbelian           Monoid
//!           \________   ________/
//!                    \ /
//!                     |
//!                     V
//!                    Ring
//!                     |
//!            commutativity_of_mul
//!                     |
//!                     V
//!              RingCommutative           GroupAbelian
//!                      \_______   ___________/
//!                              \ /
//!                               |
//!                               V
//!                             Field
//! ~~~
//!
//! The following traits are provided:
//!
//! - `Ring`
//! - `RingCommutative`
//! - `Field`
//!
//! ## Module-like structures
//!
//! ~~~notrust
//!     GroupAbelian         RingCommutative
//!           \______         _____/
//!                  \       /
//!                   |     |
//!                   V     V
//!                Module<Scalar>          Field
//!                    \______         _____/
//!                           \       /
//!                            |     |
//!                            V     V
//!                      VectorSpace<Scalar>
//! ~~~
//!
//! The following traits are provided:
//!
//! - `Module`
//! - `VectorSpace`
//!
//! # Quickcheck properties
//!
//! Functions are provided to test that algebraic properties like
//! associativity and commutativity hold for a given set of arguments.
//!
//! These tests can be automatically derived by `alga_quickcheck` attribute from `alga_derive` crate.
//!
//! For example:
//!
//! ~~~.ignore
//! use algebra::general::SemigroupMultiplicative;
//!
//! quickcheck! {
//!     fn prop_mul_is_associative(args: (i32, i32, i32)) -> bool {
//!         SemigroupMultiplicative::prop_mul_is_associative(args)
//!     }
//! }
//! ~~~

pub use self::operator::{Additive, ClosedAdd, ClosedDiv, ClosedMul, ClosedNeg, ClosedSub, Inverse,
                         Multiplicative, Operator};
pub use self::identity::{Id, Identity};
pub use self::subset::{SubsetOf, SupersetOf};

pub use self::one_operator::{AbstractGroup, AbstractGroupAbelian, AbstractLoop, AbstractMagma,
                             AbstractMonoid, AbstractQuasigroup, AbstractSemigroup};
pub use self::two_operators::{AbstractField, AbstractRing, AbstractRingCommutative};
pub use self::module::AbstractModule;
pub use self::lattice::{JoinSemilattice, Lattice, MeetSemilattice};
pub use self::specialized::{AdditiveGroup, AdditiveGroupAbelian, AdditiveLoop, AdditiveMagma,
                            AdditiveMonoid, AdditiveQuasigroup, AdditiveSemigroup, Field, Module,
                            MultiplicativeGroup, MultiplicativeGroupAbelian, MultiplicativeLoop,
                            MultiplicativeMagma, MultiplicativeMonoid, MultiplicativeQuasigroup,
                            MultiplicativeSemigroup, Ring, RingCommutative};
pub use self::real::Real;

#[macro_use]
mod one_operator;
mod two_operators;
mod module;
mod identity;
mod operator;
mod real;
mod lattice;
mod subset;
mod specialized;
#[doc(hidden)]
pub mod wrapper;