1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
// Copyright 2013-2014 The Algebra Developers. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! Fundamental algebraic structures. //! //! For most applications requiring an abstraction over the reals, `Real` //! should be sufficient. //! //! ## Algebraic properties //! //! The goal of algebraic structures is to allow elements of sets to be combined together using one //! or several operators. The number and properties of those operators characterize the algebraic //! structure. Abstract operators are usually noted `∘`, `+`, or `×`. The last two are preferred //! when their behavior conform with the usual meaning of addition and multiplication of reals. //! Let `Self` be a set. Here is a list of the most common properties those operator may fulfill: //! //! ~~~notrust //! (Closure) a, b ∈ Self ⇒ a ∘ b ∈ Self, //! (Divisibility) ∀ a, b ∈ Self, ∃! r, l ∈ Self such that l ∘ a = b and a ∘ r = b //! (Invertibility) ∃ e ∈ Self, ∀ a ∈ Self, ∃ r, l ∈ Self such that l ∘ a = a ∘ r = e //! If the right and left inverse are equal they are usually noted r = l = a⁻¹. //! (Associativity) ∀ a, b, c ∈ Self, (a ∘ b) ∘ c = a ∘ (b ∘ c) //! (Neutral Elt.) ∃ e ∈ Self, ∀ a ∈ Self, e ∘ a = a ∘ e = a //! (Commutativity) ∀ a, b ∈ Self, a ∘ b = b ∘ a //! ~~~ //! //! ## Identity elements //! //! Two traits are provided that allow the definition of the additive and //! multiplicative identity elements: //! //! - `IdentityAdditive` //! - `IdentityMultiplicative` //! //! ## AbstractGroup-like structures //! //! These structures are provided for both the addition and multiplication. //! //! These can be derived automatically by `alga_traits` attribute from `alga_derive` crate. //! //! ~~~notrust //! AbstractMagma //! | //! _______/ \______ //! / \ //! divisibility associativity //! | | //! V V //! AbstractQuasigroup AbstractSemigroup //! | | //! identity identity //! | | //! V V //! AbstractLoop AbstractMonoid //! | | //! associativity invertibility //! \______ _______/ //! \ / //! | //! V //! AbstractGroup //! | //! commutativity //! | //! V //! AbstractGroupAbelian //! ~~~ //! //! The following traits are provided: //! //! - (`Abstract`|`Additive`|`Multiplicative`)`Magma` //! - (`Abstract`|`Additive`|`Multiplicative`)`Quasigroup` //! - (`Abstract`|`Additive`|`Multiplicative`)`Loop` //! - (`Abstract`|`Additive`|`Multiplicative`)`Semigroup` //! - (`Abstract`|`Additive`|`Multiplicative`)`Monoid` //! - (`Abstract`|`Additive`|`Multiplicative`)`Group` //! - (`Abstract`|`Additive`|`Multiplicative`)`GroupAbelian` //! //! ## Ring-like structures //! //! These can be derived automatically by `alga_traits` attribute from `alga_derive` crate. //! //! ~~~notrust //! GroupAbelian Monoid //! \________ ________/ //! \ / //! | //! V //! Ring //! | //! commutativity_of_mul //! | //! V //! RingCommutative GroupAbelian //! \_______ ___________/ //! \ / //! | //! V //! Field //! ~~~ //! //! The following traits are provided: //! //! - `Ring` //! - `RingCommutative` //! - `Field` //! //! ## Module-like structures //! //! ~~~notrust //! GroupAbelian RingCommutative //! \______ _____/ //! \ / //! | | //! V V //! Module<Scalar> Field //! \______ _____/ //! \ / //! | | //! V V //! VectorSpace<Scalar> //! ~~~ //! //! The following traits are provided: //! //! - `Module` //! - `VectorSpace` //! //! # Quickcheck properties //! //! Functions are provided to test that algebraic properties like //! associativity and commutativity hold for a given set of arguments. //! //! These tests can be automatically derived by `alga_quickcheck` attribute from `alga_derive` crate. //! //! For example: //! //! ~~~.ignore //! use algebra::general::SemigroupMultiplicative; //! //! quickcheck! { //! fn prop_mul_is_associative(args: (i32, i32, i32)) -> bool { //! SemigroupMultiplicative::prop_mul_is_associative(args) //! } //! } //! ~~~ pub use self::operator::{Additive, ClosedAdd, ClosedDiv, ClosedMul, ClosedNeg, ClosedSub, Inverse, Multiplicative, Operator}; pub use self::identity::{Id, Identity}; pub use self::subset::{SubsetOf, SupersetOf}; pub use self::one_operator::{AbstractGroup, AbstractGroupAbelian, AbstractLoop, AbstractMagma, AbstractMonoid, AbstractQuasigroup, AbstractSemigroup}; pub use self::two_operators::{AbstractField, AbstractRing, AbstractRingCommutative}; pub use self::module::AbstractModule; pub use self::lattice::{JoinSemilattice, Lattice, MeetSemilattice}; pub use self::specialized::{AdditiveGroup, AdditiveGroupAbelian, AdditiveLoop, AdditiveMagma, AdditiveMonoid, AdditiveQuasigroup, AdditiveSemigroup, Field, Module, MultiplicativeGroup, MultiplicativeGroupAbelian, MultiplicativeLoop, MultiplicativeMagma, MultiplicativeMonoid, MultiplicativeQuasigroup, MultiplicativeSemigroup, Ring, RingCommutative}; pub use self::real::Real; #[macro_use] mod one_operator; mod two_operators; mod module; mod identity; mod operator; mod real; mod lattice; mod subset; mod specialized; #[doc(hidden)] pub mod wrapper;