1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
use approx::RelativeEq; use num::Num; use num_complex::Complex; #[cfg(feature = "decimal")] use decimal::d128; use general::wrapper::Wrapper as W; use general::{ AbstractGroupAbelian, AbstractMonoid, Additive, ClosedNeg, Multiplicative, Operator, }; /// A ring is the combination of an abelian group and a multiplicative monoid structure. /// /// A ring is equipped with: /// /// * A abstract operator (usually the addition) that fulfills the constraints of an abelian group. /// * A second abstract operator (usually the multiplication) that fulfills the constraints of a monoid. pub trait AbstractRing<A: Operator = Additive, M: Operator = Multiplicative>: AbstractGroupAbelian<A> + AbstractMonoid<M> { /// Returns `true` if the multiplication and addition operators are distributive for /// the given argument tuple. Approximate equality is used for verifications. fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where Self: RelativeEq, { let (a, b, c) = args; let a = || W::<_, A, M>::new(a.clone()); let b = || W::<_, A, M>::new(b.clone()); let c = || W::<_, A, M>::new(c.clone()); // Left distributivity relative_eq!(a() * (b() + c()), a() * b() + a() * c()) && // Right distributivity relative_eq!((b() + c()) * a(), b() * a() + c() * a()) } /// Returns `true` if the multiplication and addition operators are distributive for /// the given argument tuple. fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where Self: Eq, { let (a, b, c) = args; let a = || W::<_, A, M>::new(a.clone()); let b = || W::<_, A, M>::new(b.clone()); let c = || W::<_, A, M>::new(c.clone()); // Left distributivity (a() * b()) + c() == (a() * b()) + (a() * c()) && // Right distributivity (b() + c()) * a() == (b() * a()) + (c() * a()) } } /// Implements the ring trait for types provided. /// # Examples /// /// ``` /// # #[macro_use] /// # extern crate alga; /// # use alga::general::{AbstractMagma, AbstractRing, Additive, Multiplicative, Inverse, Identity}; /// # fn main() {} /// #[derive(PartialEq, Clone)] /// struct Wrapper<T>(T); /// /// impl<T: AbstractMagma<Additive>> AbstractMagma<Additive> for Wrapper<T> { /// fn operate(&self, right: &Self) -> Self { /// Wrapper(self.0.operate(&right.0)) /// } /// } /// /// impl<T: Inverse<Additive>> Inverse<Additive> for Wrapper<T> { /// fn inverse(&self) -> Self { /// Wrapper(self.0.inverse()) /// } /// } /// /// impl<T: Identity<Additive>> Identity<Additive> for Wrapper<T> { /// fn identity() -> Self { /// Wrapper(T::identity()) /// } /// } /// /// impl<T: AbstractMagma<Multiplicative>> AbstractMagma<Multiplicative> for Wrapper<T> { /// fn operate(&self, right: &Self) -> Self { /// Wrapper(self.0.operate(&right.0)) /// } /// } /// /// impl<T: Identity<Multiplicative>> Identity<Multiplicative> for Wrapper<T> { /// fn identity() -> Self { /// Wrapper(T::identity()) /// } /// } /// /// impl_ring!(<Additive, Multiplicative> for Wrapper<T> where T: AbstractRing); /// ``` macro_rules! impl_ring( (<$A:ty, $M:ty> for $($T:tt)+) => { impl_abelian!(<$A> for $($T)+); impl_monoid!(<$M> for $($T)+); impl_marker!($crate::general::AbstractRing<$A, $M>; $($T)+); } ); /// A ring with a commutative multiplication. /// /// ```notrust /// ∀ a, b ∈ Self, a × b = b × a /// ``` pub trait AbstractRingCommutative<A: Operator = Additive, M: Operator = Multiplicative>: AbstractRing<A, M> { /// Returns `true` if the multiplication operator is commutative for the given argument tuple. /// Approximate equality is used for verifications. fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where Self: RelativeEq, { let (a, b) = args; let a = || W::<_, A, M>::new(a.clone()); let b = || W::<_, A, M>::new(b.clone()); relative_eq!(a() * b(), b() * a()) } /// Returns `true` if the multiplication operator is commutative for the given argument tuple. fn prop_mul_is_commutative(args: (Self, Self)) -> bool where Self: Eq, { let (a, b) = args; let a = || W::<_, A, M>::new(a.clone()); let b = || W::<_, A, M>::new(b.clone()); a() * b() == b() * a() } } /// Implements the commutative ring trait for types provided. /// # Examples /// /// ``` /// # #[macro_use] /// # extern crate alga; /// # use alga::general::{AbstractMagma, AbstractRingCommutative, Additive, Multiplicative, Inverse, Identity}; /// # fn main() {} /// #[derive(PartialEq, Clone)] /// struct Wrapper<T>(T); /// /// impl<T: AbstractMagma<Additive>> AbstractMagma<Additive> for Wrapper<T> { /// fn operate(&self, right: &Self) -> Self { /// Wrapper(self.0.operate(&right.0)) /// } /// } /// /// impl<T: Inverse<Additive>> Inverse<Additive> for Wrapper<T> { /// fn inverse(&self) -> Self { /// Wrapper(self.0.inverse()) /// } /// } /// /// impl<T: Identity<Additive>> Identity<Additive> for Wrapper<T> { /// fn identity() -> Self { /// Wrapper(T::identity()) /// } /// } /// /// impl<T: AbstractMagma<Multiplicative>> AbstractMagma<Multiplicative> for Wrapper<T> { /// fn operate(&self, right: &Self) -> Self { /// Wrapper(self.0.operate(&right.0)) /// } /// } /// /// impl<T: Identity<Multiplicative>> Identity<Multiplicative> for Wrapper<T> { /// fn identity() -> Self { /// Wrapper(T::identity()) /// } /// } /// /// impl_ring!(<Additive, Multiplicative> for Wrapper<T> where T: AbstractRingCommutative); /// ``` macro_rules! impl_ring_commutative( (<$A:ty, $M:ty> for $($T:tt)+) => { impl_ring!(<$A, $M> for $($T)+); impl_marker!($crate::general::AbstractRingCommutative<$A, $M>; $($T)+); } ); /// A field is a commutative ring, and an abelian group under both operators. pub trait AbstractField<A: Operator = Additive, M: Operator = Multiplicative>: AbstractRingCommutative<A, M> + AbstractGroupAbelian<M> { } /// Implements the field trait for types provided. /// # Examples /// /// ``` /// # #[macro_use] /// # extern crate alga; /// # use alga::general::{AbstractMagma, AbstractField, Additive, Multiplicative, Inverse, Identity}; /// # fn main() {} /// #[derive(PartialEq, Clone)] /// struct Wrapper<T>(T); /// /// impl<T: AbstractMagma<Additive>> AbstractMagma<Additive> for Wrapper<T> { /// fn operate(&self, right: &Self) -> Self { /// Wrapper(self.0.operate(&right.0)) /// } /// } /// /// impl<T: Inverse<Additive>> Inverse<Additive> for Wrapper<T> { /// fn inverse(&self) -> Self { /// Wrapper(self.0.inverse()) /// } /// } /// /// impl<T: Identity<Additive>> Identity<Additive> for Wrapper<T> { /// fn identity() -> Self { /// Wrapper(T::identity()) /// } /// } /// /// impl<T: AbstractMagma<Multiplicative>> AbstractMagma<Multiplicative> for Wrapper<T> { /// fn operate(&self, right: &Self) -> Self { /// Wrapper(self.0.operate(&right.0)) /// } /// } /// impl<T: Inverse<Multiplicative>> Inverse<Multiplicative> for Wrapper<T> { /// fn inverse(&self) -> Self { /// Wrapper(self.0.inverse()) /// } /// } /// /// impl<T: Identity<Multiplicative>> Identity<Multiplicative> for Wrapper<T> { /// fn identity() -> Self { /// Wrapper(T::identity()) /// } /// } /// /// impl_field!(<Additive, Multiplicative> for Wrapper<T> where T: AbstractField); /// ``` macro_rules! impl_field( (<$A:ty, $M:ty> for $($T:tt)+) => { impl_ring_commutative!(<$A, $M> for $($T)+); impl_marker!($crate::general::AbstractQuasigroup<$M>; $($T)+); impl_marker!($crate::general::AbstractLoop<$M>; $($T)+); impl_marker!($crate::general::AbstractGroup<$M>; $($T)+); impl_marker!($crate::general::AbstractGroupAbelian<$M>; $($T)+); impl_marker!($crate::general::AbstractField<$A, $M>; $($T)+); } ); /* * * Implementations. * */ impl_ring_commutative!(<Additive, Multiplicative> for i8; i16; i32; i64; isize); impl_field!(<Additive, Multiplicative> for f32; f64); #[cfg(feature = "decimal")] impl_field!(<Additive, Multiplicative> for d128); impl<N: Num + Clone + ClosedNeg + AbstractRing> AbstractRing for Complex<N> {} impl<N: Num + Clone + ClosedNeg + AbstractRingCommutative> AbstractRingCommutative for Complex<N> {} impl<N: Num + Clone + ClosedNeg + AbstractField> AbstractField for Complex<N> {}