Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
use core::fmt::{self, Display, Debug};

use {Causes, Fail};
use backtrace::Backtrace;
use context::Context;
use compat::Compat;

#[cfg(feature = "std")]
use box_std::BoxStd;

#[cfg_attr(feature = "small-error", path = "./error_impl_small.rs")]
mod error_impl;
use self::error_impl::ErrorImpl;

#[cfg(feature = "std")]
use std::error::Error as StdError;


/// The `Error` type, which can contain any failure.
///
/// Functions which accumulate many kinds of errors should return this type.
/// All failures can be converted into it, so functions which catch those
/// errors can be tried with `?` inside of a function that returns this kind
/// of error.
///
/// In addition to implementing `Debug` and `Display`, this type carries `Backtrace`
/// information, and can be downcast into the failure that underlies it for
/// more detailed inspection.
pub struct Error {
    imp: ErrorImpl,
}

impl<F: Fail> From<F> for Error {
    fn from(failure: F) -> Error {
        Error {
            imp: ErrorImpl::from(failure)
        }
    }
}

impl Error {
    /// Creates an `Error` from `Box<std::error::Error>`.
    ///
    /// This method is useful for comparability with code,
    /// which does not use the `Fail` trait.
    ///
    /// # Example
    ///
    /// ```
    /// use std::error::Error as StdError;
    /// use failure::Error;
    ///
    /// fn app_fn() -> Result<i32, Error> {
    ///     let x = library_fn().map_err(Error::from_boxed_compat)?;
    ///     Ok(x * 2)
    /// }
    ///
    /// fn library_fn() -> Result<i32, Box<StdError + Sync + Send + 'static>> {
    ///     Ok(92)
    /// }
    /// ```
    #[cfg(feature = "std")]
    pub fn from_boxed_compat(err: Box<dyn StdError + Sync + Send + 'static>) -> Error {
        Error::from(BoxStd(err))
    }

    /// Return a reference to the underlying failure that this `Error`
    /// contains.
    pub fn as_fail(&self) -> &dyn Fail {
        self.imp.failure()
    }

    /// Returns the name of the underlying fail.
    pub fn name(&self) -> Option<&str> {
        self.as_fail().name()
    }

    /// Returns a reference to the underlying cause of this `Error`. Unlike the
    /// method on `Fail`, this does not return an `Option`. The `Error` type
    /// always has an underlying failure.
    ///
    /// This method has been deprecated in favor of the [Error::as_fail] method,
    /// which does the same thing.
    #[deprecated(since = "0.1.2", note = "please use 'as_fail()' method instead")]
    pub fn cause(&self) -> &dyn Fail {
        self.as_fail()
    }

    /// Gets a reference to the `Backtrace` for this `Error`.
    ///
    /// If the failure this wrapped carried a backtrace, that backtrace will
    /// be returned. Otherwise, the backtrace will have been constructed at
    /// the point that failure was cast into the `Error` type.
    pub fn backtrace(&self) -> &Backtrace {
        self.imp.failure().backtrace().unwrap_or(&self.imp.backtrace())
    }

    /// Provides context for this `Error`.
    ///
    /// This can provide additional information about this error, appropriate
    /// to the semantics of the current layer. That is, if you have a
    /// lower-level error, such as an IO error, you can provide additional context
    /// about what that error means in the context of your function. This
    /// gives users of this function more information about what has gone
    /// wrong.
    ///
    /// This takes any type that implements `Display`, as well as
    /// `Send`/`Sync`/`'static`. In practice, this means it can take a `String`
    /// or a string literal, or a failure, or some other custom context-carrying
    /// type.
    pub fn context<D: Display + Send + Sync + 'static>(self, context: D) -> Context<D> {
        Context::with_err(context, self)
    }

    /// Wraps `Error` in a compatibility type.
    ///
    /// This type implements the `Error` trait from `std::error`. If you need
    /// to pass failure's `Error` to an interface that takes any `Error`, you
    /// can use this method to get a compatible type.
    pub fn compat(self) -> Compat<Error> {
        Compat { error: self }
    }

    /// Attempts to downcast this `Error` to a particular `Fail` type.
    ///
    /// This downcasts by value, returning an owned `T` if the underlying
    /// failure is of the type `T`. For this reason it returns a `Result` - in
    /// the case that the underlying error is of a different type, the
    /// original `Error` is returned.
    pub fn downcast<T: Fail>(self) -> Result<T, Error> {
        self.imp.downcast().map_err(|imp| Error { imp })
    }

    /// Returns the "root cause" of this error - the last value in the
    /// cause chain which does not return an underlying `cause`.
    pub fn find_root_cause(&self) -> &dyn Fail {
        self.as_fail().find_root_cause()
    }

    /// Returns a iterator over the causes of this error with the cause
    /// of the fail as the first item and the `root_cause` as the final item.
    ///
    /// Use `iter_chain` to also include the fail of this error itself.
    pub fn iter_causes(&self) -> Causes {
        self.as_fail().iter_causes()
    }

    /// Returns a iterator over all fails up the chain from the current
    /// as the first item up to the `root_cause` as the final item.
    ///
    /// This means that the chain also includes the fail itself which
    /// means that it does *not* start with `cause`.  To skip the outermost
    /// fail use `iter_causes` instead.
    pub fn iter_chain(&self) -> Causes {
        self.as_fail().iter_chain()
    }

    /// Attempts to downcast this `Error` to a particular `Fail` type by
    /// reference.
    ///
    /// If the underlying error is not of type `T`, this will return `None`.
    pub fn downcast_ref<T: Fail>(&self) -> Option<&T> {
        self.imp.failure().downcast_ref()
    }

    /// Attempts to downcast this `Error` to a particular `Fail` type by
    /// mutable reference.
    ///
    /// If the underlying error is not of type `T`, this will return `None`.
    pub fn downcast_mut<T: Fail>(&mut self) -> Option<&mut T> {
        self.imp.failure_mut().downcast_mut()
    }

    /// Deprecated alias to `find_root_cause`.
    #[deprecated(since = "0.1.2", note = "please use the 'find_root_cause()' method instead")]
    pub fn root_cause(&self) -> &dyn Fail {
        ::find_root_cause(self.as_fail())
    }

    /// Deprecated alias to `iter_causes`.
    #[deprecated(since = "0.1.2", note = "please use the 'iter_chain()' method instead")]
    pub fn causes(&self) -> Causes {
        Causes { fail: Some(self.as_fail()) }
    }
}

impl Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        Display::fmt(&self.imp.failure(), f)
    }
}

impl Debug for Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let backtrace = self.imp.backtrace();
        if backtrace.is_none() {
            Debug::fmt(&self.imp.failure(), f)
        } else {
            write!(f, "{:?}\n\n{:?}", &self.imp.failure(), backtrace)
        }
    }
}

impl AsRef<dyn Fail> for Error {
    fn as_ref(&self) -> &dyn Fail {
        self.as_fail()
    }
}

#[cfg(test)]
mod test {
    use std::io;
    use super::Error;

    fn assert_just_data<T: Send + Sync + 'static>() { }

    #[test]
    fn assert_error_is_just_data() {
        assert_just_data::<Error>();
    }

    #[test]
    fn methods_seem_to_work() {
        let io_error: io::Error = io::Error::new(io::ErrorKind::NotFound, "test");
        let error: Error = io::Error::new(io::ErrorKind::NotFound, "test").into();
        assert!(error.downcast_ref::<io::Error>().is_some());
        let _: ::Backtrace = *error.backtrace();
        assert_eq!(format!("{:?}", io_error), format!("{:?}", error));
        assert_eq!(format!("{}", io_error), format!("{}", error));
        drop(error);
        assert!(true);
    }

    #[test]
    fn downcast_can_be_used() {
        let mut error: Error = io::Error::new(io::ErrorKind::NotFound, "test").into();
        {
            let real_io_error_ref = error.downcast_ref::<io::Error>().unwrap();
            assert_eq!(real_io_error_ref.to_string(), "test");
        }
        {
            let real_io_error_mut = error.downcast_mut::<io::Error>().unwrap();
            assert_eq!(real_io_error_mut.to_string(), "test");
        }
        let real_io_error = error.downcast::<io::Error>().unwrap();
        assert_eq!(real_io_error.to_string(), "test");
    }
}