Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
// Copyright 2014-2018 Optimal Computing (NZ) Ltd.
// Licensed under the MIT license.  See LICENSE for details.

use std::cmp::Ordering;
use std::num::{FpCategory};
use super::{Ulps, ApproxEqUlps};

/// ApproxOrdUlps is for sorting floating point values where approximate equality
/// is considered equal.  This is only really useful for types which cannot
/// implement Ord
///
/// This is deprecated. If you are using this type, please contact the author and
/// explain how it is useful.
#[deprecated(since = "0.5.0", note="types that can implement this can implement PartialOrd")]
pub trait ApproxOrdUlps: ApproxEqUlps {
    /// This method returns an ordering between `self` and `other` values
    /// if one exists, where Equal is returned if they are approximately
    /// equal within `ulps` floating point representations.  See module
    /// documentation for an understanding of `ulps`
    fn approx_cmp_ulps(&self, other: &Self, ulps: <<Self as ApproxEqUlps>::Flt as Ulps>::U)
                       -> Ordering;

    /// This method tests less than (for `self` < `other`), where values
    /// within `ulps` of each other are not less than.  See module
    /// documentation for an understanding of `ulps`.
    #[inline]
    fn approx_lt_ulps(&self, other: &Self, ulps: <<Self as ApproxEqUlps>::Flt as Ulps>::U)
                      -> bool
    {
        match self.approx_cmp_ulps(other, ulps) {
            Ordering::Less => true,
            _ => false,
        }
    }

    /// This method tests less than or equal to (for `self` <= `other`)
    /// where values within `ulps` are equal.  See module documentation
    /// for an understanding of `ulps`.
    #[inline]
    fn approx_le_ulps(&self, other: &Self, ulps: <<Self as ApproxEqUlps>::Flt as Ulps>::U)
                      -> bool
    {
        match self.approx_cmp_ulps(other, ulps) {
            Ordering::Less | Ordering::Equal => true,
            _ => false,
        }
    }

    /// This method tests greater than (for `self` > `other`)
    /// where values within `ulps` are not greater than.  See module
    /// documentation for an understanding of `ulps`
    #[inline]
    fn approx_gt_ulps(&self, other: &Self, ulps: <<Self as ApproxEqUlps>::Flt as Ulps>::U)
                      -> bool
    {
        match self.approx_cmp_ulps(other, ulps) {
            Ordering::Greater => true,
            _ => false,
        }
    }

    /// This method tests greater than or equal to (for `self` > `other`)
    /// where values within `ulps` are equal.  See module documentation
    /// for an understanding of `ulps`.
    #[inline]
    fn approx_ge_ulps(&self, other: &Self, ulps: <<Self as ApproxEqUlps>::Flt as Ulps>::U)
                      -> bool
    {
        match self.approx_cmp_ulps(other, ulps) {
            Ordering::Greater | Ordering::Equal => true,
            _ => false,
        }
    }
}

#[allow(deprecated)]
impl ApproxOrdUlps for f32 {
    fn approx_cmp_ulps(&self, other: &f32, ulps: <<Self as ApproxEqUlps>::Flt as Ulps>::U)
                       -> Ordering
    {
        let selfclass = self.classify();
        let otherclass = other.classify();

        // -0 and +0 are drastically far in ulps terms, so
        // we need a special case for that.
        if selfclass==FpCategory::Zero && otherclass==FpCategory::Zero {
            return Ordering::Equal;
        }

        // Handle differing signs as a special case, even if they are very
        // close, most people consider them unequal.
        let self_pos = self.is_sign_positive();
        let other_pos = other.is_sign_positive();

        let udiff: i32 = match (self_pos, other_pos) {
            (true, false) => return Ordering::Greater,
            (false, true) => return Ordering::Less,
            (true, true) => self.ulps(other),
            (false, false) => other.ulps(self), // invert ulps for negatives
        };

        match udiff {
            x if x < -ulps => Ordering::Less,
            x if x >= -ulps && x <= ulps => Ordering::Equal,
            x if x > ulps => Ordering::Greater,
            _ => unreachable!()
        }
    }
}

#[test]
#[allow(deprecated)]
fn f32_approx_cmp_test1() {
    let f: f32 = 0.1_f32;
    let mut sum: f32 = 0.0_f32;
    for _ in 0_isize..10_isize { sum += f; }
    let product: f32 = f * 10.0_f32;
    assert!(sum != product); // Should not be directly equal:
    println!("Ulps Difference: {}",sum.ulps(&product));
    assert!(sum.approx_cmp_ulps(&product,1) == Ordering::Equal); // But should be close
    assert!(sum.approx_cmp_ulps(&product,0) != Ordering::Equal);
    assert!(product.approx_cmp_ulps(&sum,0) != Ordering::Equal);
}
#[test]
#[allow(deprecated)]
fn f32_approx_cmp_test2() {
    let x: f32 = 1000000_f32;
    let y: f32 = 1000000.1_f32;
    assert!(x != y); // Should not be directly equal
    println!("Ulps Difference: {}",x.ulps(&y));
    assert!(x.approx_cmp_ulps(&y,2) == Ordering::Equal);
    assert!(x.approx_cmp_ulps(&y,1) == Ordering::Less);
    assert!(y.approx_cmp_ulps(&x,1) == Ordering::Greater);
}
#[test]
#[allow(deprecated)]
fn f32_approx_cmp_negatives() {
    let x: f32 = -1.0;
    let y: f32 = -2.0;
    assert!(x.approx_cmp_ulps(&y, 2) == Ordering::Greater);
}

// In all cases, approx_cmp() should be the same as cmp() if ulps=0
#[test]
#[allow(deprecated)]
fn f32_approx_cmp_vs_partial_cmp() {

    let testcases: [u32; 20] = [
        0,          // +0
        0x80000000, // -0
        0x00000101, // + denormal
        0x80000101, // - denormal
        0x00001101, // + denormal
        0x80001101, // - denormal
        0x01000101, // + normal
        0x81000101, // - normal
        0x01001101, // + normal
        0x81001101, // - normal
        0x7F800000, // +infinity
        0xFF800000, // -infinity
        0x7F801101, // SNaN
        0xFF801101, // SNaN
        0x7FC01101, // QNaN
        0xFFC01101, // QNaN
        0x7F801110, // SNaN
        0xFF801110, // SNaN
        0x7FC01110, // QNaN
        0xFFC01110, // QNaN

    ];

    let mut xf: f32;
    let mut yf: f32;
    for xbits in testcases.iter() {
        for ybits in testcases.iter() {
            xf = <f32>::from_bits(*xbits);
            yf = <f32>::from_bits(*ybits);
            if let Some(ordering) = xf.partial_cmp(&yf) {
                if ordering != xf.approx_cmp_ulps(&yf, 0) {
                    panic!("{} ({:x}) vs {} ({:x}): partial_cmp gives {:?} \
                            approx_cmp_ulps gives {:?}",
                           xf, xbits, yf, ybits, ordering , xf.approx_cmp_ulps(&yf, 0));
                }
            }
        }
        print!(".");
    }
}

#[allow(deprecated)]
impl ApproxOrdUlps for f64 {
    fn approx_cmp_ulps(&self, other: &f64, ulps: <<Self as ApproxEqUlps>::Flt as Ulps>::U)
                       -> Ordering
    {
        let selfclass = self.classify();
        let otherclass = other.classify();

        // -0 and +0 are drastically far in ulps terms, so
        // we need a special case for that.
        if selfclass==FpCategory::Zero && otherclass==FpCategory::Zero {
            return Ordering::Equal;
        }

        // Handle differing signs as a special case, even if they are very
        // close, most people consider them unequal.
        let self_pos = self.is_sign_positive();
        let other_pos = other.is_sign_positive();

        let udiff: i64 = match (self_pos, other_pos) {
            (true, false) => return Ordering::Greater,
            (false, true) => return Ordering::Less,
            (true, true) => self.ulps(other),
            (false, false) => other.ulps(self), // invert ulps for negatives
        };

        match udiff {
            x if x < -ulps => Ordering::Less,
            x if x >= -ulps && x <= ulps => Ordering::Equal,
            x if x > ulps => Ordering::Greater,
            _ => unreachable!()
        }
    }
}

#[test]
#[allow(deprecated)]
fn f64_approx_cmp_ulps_test1() {
    let f: f64 = 0.000000001_f64;
    let mut sum: f64 = 0.0_f64;
    for _ in 0_isize..10_isize { sum += f; }
    let product: f64 = f * 10.0_f64;
    assert!(sum != product); // Should not be directly equal:
    println!("Ulps Difference: {}",sum.ulps(&product));
    assert!(sum.approx_cmp_ulps(&product,1) == Ordering::Equal); // But should be close
    assert!(sum.approx_cmp_ulps(&product,0) != Ordering::Equal);
    assert!(product.approx_cmp_ulps(&sum,0) != Ordering::Equal);
}
#[test]
#[allow(deprecated)]
fn f64_approx_cmp_ulps_test2() {
    let x: f64 = 1000000_f64;
    let y: f64 = 1000000.0000000003_f64;
    assert!(x != y); // Should not be directly equal
    println!("Ulps Difference: {}",x.ulps(&y));
    assert!(x.approx_cmp_ulps(&y,3) == Ordering::Equal);
    assert!(x.approx_cmp_ulps(&y,2) == Ordering::Less);
    assert!(y.approx_cmp_ulps(&x,2) == Ordering::Greater);
}
#[test]
#[allow(deprecated)]
fn f64_approx_cmp_ulps_negatives() {
    let x: f64 = -1.0;
    let y: f64 = -2.0;
    assert!(x.approx_cmp_ulps(&y, 2) == Ordering::Greater);
}

// In all cases, approx_cmp_ulps() should be the same as cmp() if ulps=0
#[test]
#[allow(deprecated)]
fn f64_approx_cmp_ulps_vs_partial_cmp() {

    let testcases: [u64; 20] = [
        0,                   // +0
        0x80000000_00000000, // -0
        0x00000010_10000000, // + denormal
        0x80000010_10000000, // - denormal
        0x00000110_10000000, // + denormal
        0x80000110_10000000, // - denormal
        0x01000101_00100100, // + normal
        0x81000101_00100100, // - normal
        0x01001101_00100100, // + normal
        0x81001101_00100100, // - normal
        0x7FF00000_00000000, // +infinity
        0xFFF00000_00000000, // -infinity
        0x7FF01101_00100100, // SNaN
        0xFFF01101_00100100, // SNaN
        0x7FF81101_00100100, // QNaN
        0xFFF81101_00100100, // QNaN
        0x7FF01110_00100100, // SNaN
        0xFFF01110_00100100, // SNaN
        0x7FF81110_00100100, // QNaN
        0xFFF81110_00100100, // QNaN
    ];

    let mut xf: f64;
    let mut yf: f64;
    for xbits in testcases.iter() {
        for ybits in testcases.iter() {
            xf = <f64>::from_bits(*xbits);
            yf = <f64>::from_bits(*ybits);
            if let Some(ordering) = xf.partial_cmp(&yf) {
                if ordering != xf.approx_cmp_ulps(&yf, 0) {
                    panic!("{} ({:x}) vs {} ({:x}): partial_cmp gives {:?} \
                            approx_cmp_ulps gives {:?}",
                           xf, xbits, yf, ybits, ordering , xf.approx_cmp_ulps(&yf, 0));
                }
            }
        }
        print!(".");
    }
}