1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
use std::convert::TryFrom;
use std::io::{self, Cursor, Read, Seek, SeekFrom};
use std::iter::{repeat, Iterator, Rev};
use std::marker::PhantomData;
use std::slice::ChunksMut;
use std::{error, fmt, mem};
use std::cmp::{self, Ordering};

use byteorder::{LittleEndian, ReadBytesExt};

use crate::color::ColorType;
use crate::error::{
    DecodingError, ImageError, ImageResult, UnsupportedError, UnsupportedErrorKind,
};
use crate::image::{self, ImageDecoder, ImageDecoderExt, ImageFormat, Progress};

const BITMAPCOREHEADER_SIZE: u32 = 12;
const BITMAPINFOHEADER_SIZE: u32 = 40;
const BITMAPV2HEADER_SIZE: u32 = 52;
const BITMAPV3HEADER_SIZE: u32 = 56;
const BITMAPV4HEADER_SIZE: u32 = 108;
const BITMAPV5HEADER_SIZE: u32 = 124;

static LOOKUP_TABLE_3_BIT_TO_8_BIT: [u8; 8] = [0, 36, 73, 109, 146, 182, 219, 255];
static LOOKUP_TABLE_4_BIT_TO_8_BIT: [u8; 16] = [
    0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255,
];
static LOOKUP_TABLE_5_BIT_TO_8_BIT: [u8; 32] = [
    0, 8, 16, 25, 33, 41, 49, 58, 66, 74, 82, 90, 99, 107, 115, 123, 132, 140, 148, 156, 165, 173,
    181, 189, 197, 206, 214, 222, 230, 239, 247, 255,
];
static LOOKUP_TABLE_6_BIT_TO_8_BIT: [u8; 64] = [
    0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93,
    97, 101, 105, 109, 113, 117, 121, 125, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170,
    174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 215, 219, 223, 227, 231, 235, 239, 243, 247,
    251, 255,
];

static R5_G5_B5_COLOR_MASK: Bitfields = Bitfields {
    r: Bitfield { len: 5, shift: 10 },
    g: Bitfield { len: 5, shift: 5 },
    b: Bitfield { len: 5, shift: 0 },
    a: Bitfield { len: 0, shift: 0 },
};
const R8_G8_B8_COLOR_MASK: Bitfields = Bitfields {
    r: Bitfield { len: 8, shift: 24 },
    g: Bitfield { len: 8, shift: 16 },
    b: Bitfield { len: 8, shift: 8 },
    a: Bitfield { len: 0, shift: 0 },
};

const RLE_ESCAPE: u8 = 0;
const RLE_ESCAPE_EOL: u8 = 0;
const RLE_ESCAPE_EOF: u8 = 1;
const RLE_ESCAPE_DELTA: u8 = 2;

/// The maximum width/height the decoder will process.
const MAX_WIDTH_HEIGHT: i32 = 0xFFFF;

#[derive(PartialEq, Copy, Clone)]
enum ImageType {
    Palette,
    RGB16,
    RGB24,
    RGB32,
    RGBA32,
    RLE8,
    RLE4,
    Bitfields16,
    Bitfields32,
}

#[derive(PartialEq)]
enum BMPHeaderType {
    Core,
    Info,
    V2,
    V3,
    V4,
    V5,
}

#[derive(PartialEq)]
enum FormatFullBytes {
    RGB24,
    RGB32,
    RGBA32,
    Format888,
}

enum Chunker<'a> {
    FromTop(ChunksMut<'a, u8>),
    FromBottom(Rev<ChunksMut<'a, u8>>),
}

pub(crate) struct RowIterator<'a> {
    chunks: Chunker<'a>,
}

impl<'a> Iterator for RowIterator<'a> {
    type Item = &'a mut [u8];

    #[inline(always)]
    fn next(&mut self) -> Option<&'a mut [u8]> {
        match self.chunks {
            Chunker::FromTop(ref mut chunks) => chunks.next(),
            Chunker::FromBottom(ref mut chunks) => chunks.next(),
        }
    }
}

/// All errors that can occur when attempting to parse a BMP
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
enum DecoderError {
    // We ran out of data while we still had rows to fill in.
    RleDataTooShort,

    /// The bitfield mask interleaves set and unset bits
    BitfieldMaskNonContiguous,
    /// Bitfield mask invalid (e.g. too long for specified type)
    BitfieldMaskInvalid,
    /// Bitfield (of the specified width – 16- or 32-bit) mask not present
    BitfieldMaskMissing(u32),
    /// Bitfield (of the specified width – 16- or 32-bit) masks not present
    BitfieldMasksMissing(u32),

    /// BMP's "BM" signature wrong or missing
    BmpSignatureInvalid,
    /// More than the exactly one allowed plane specified by the format
    MoreThanOnePlane,
    /// Invalid amount of bits per channel for the specified image type
    InvalidChannelWidth(ChannelWidthError, u16),

    /// The width is negative
    NegativeWidth(i32),
    /// One of the dimensions is larger than a soft limit
    ImageTooLarge(i32, i32),
    /// The height is `i32::min_value()`
    ///
    /// General negative heights specify top-down DIBs
    InvalidHeight,

    /// Specified image type is invalid for top-down BMPs (i.e. is compressed)
    ImageTypeInvalidForTopDown(u32),
    /// Image type not currently recognized by the decoder
    ImageTypeUnknown(u32),

    /// Bitmap header smaller than the core header
    HeaderTooSmall(u32),

    /// The palette is bigger than allowed by the bit count of the BMP
    PaletteSizeExceeded {
        colors_used: u32,
        bit_count: u16,
    }
}

impl fmt::Display for DecoderError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            DecoderError::RleDataTooShort =>
                f.write_str("Not enough RLE data"),
            DecoderError::BitfieldMaskNonContiguous =>
                f.write_str("Non-contiguous bitfield mask"),
            DecoderError::BitfieldMaskInvalid =>
                f.write_str("Invalid bitfield mask"),
            DecoderError::BitfieldMaskMissing(bb) =>
                f.write_fmt(format_args!("Missing {}-bit bitfield mask", bb)),
            DecoderError::BitfieldMasksMissing(bb) =>
                f.write_fmt(format_args!("Missing {}-bit bitfield masks", bb)),
            DecoderError::BmpSignatureInvalid =>
                f.write_str("BMP signature not found"),
            DecoderError::MoreThanOnePlane =>
                f.write_str("More than one plane"),
            DecoderError::InvalidChannelWidth(tp, n) =>
                f.write_fmt(format_args!("Invalid channel bit count for {}: {}", tp, n)),
            DecoderError::NegativeWidth(w) =>
                f.write_fmt(format_args!("Negative width ({})", w)),
            DecoderError::ImageTooLarge(w, h) =>
                f.write_fmt(format_args!("Image too large (one of ({}, {}) > soft limit of {})", w, h, MAX_WIDTH_HEIGHT)),
            DecoderError::InvalidHeight =>
                f.write_str("Invalid height"),
            DecoderError::ImageTypeInvalidForTopDown(tp) =>
                f.write_fmt(format_args!("Invalid image type {} for top-down image.", tp)),
            DecoderError::ImageTypeUnknown(tp) =>
                f.write_fmt(format_args!("Unknown image compression type {}", tp)),
            DecoderError::HeaderTooSmall(s) =>
                f.write_fmt(format_args!("Bitmap header too small ({} bytes)", s)),
            DecoderError::PaletteSizeExceeded { colors_used, bit_count } =>
                f.write_fmt(format_args!("Palette size {} exceeds maximum size for BMP with bit count of {}", colors_used, bit_count)),
        }
    }
}

impl From<DecoderError> for ImageError {
    fn from(e: DecoderError) -> ImageError {
        ImageError::Decoding(DecodingError::new(ImageFormat::Bmp.into(), e))
    }
}

impl error::Error for DecoderError {}

/// Distinct image types whose saved channel width can be invalid
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
enum ChannelWidthError {
    /// RGB
    Rgb,
    /// 8-bit run length encoding
    Rle8,
    /// 4-bit run length encoding
    Rle4,
    /// Bitfields (16- or 32-bit)
    Bitfields,
}

impl fmt::Display for ChannelWidthError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str(match self {
            ChannelWidthError::Rgb => "RGB",
            ChannelWidthError::Rle8 => "RLE8",
            ChannelWidthError::Rle4 => "RLE4",
            ChannelWidthError::Bitfields => "bitfields",
        })
    }
}

/// Convenience function to check if the combination of width, length and number of
/// channels would result in a buffer that would overflow.
fn check_for_overflow(width: i32, length: i32, channels: usize) -> ImageResult<()> {
    num_bytes(width, length, channels)
        .map(|_| ())
        .ok_or_else(||
            ImageError::Unsupported(UnsupportedError::from_format_and_kind(
                ImageFormat::Bmp.into(),
                UnsupportedErrorKind::GenericFeature(format!("Image dimensions ({}x{} w/{} channels) are too large",
                    width, length, channels)))))
}

/// Calculate how many many bytes a buffer holding a decoded image with these properties would
/// require. Returns `None` if the buffer size would overflow or if one of the sizes are negative.
fn num_bytes(width: i32, length: i32, channels: usize) -> Option<usize> {
    if width <= 0 || length <= 0 {
        None
    } else {
        match channels.checked_mul(width as usize) {
            Some(n) => n.checked_mul(length as usize),
            None => None,
        }
    }
}

/// The maximum starting number of pixels in the pixel buffer, might want to tweak this.
///
/// For images that specify large sizes, we don't allocate the full buffer right away
/// to somewhat mitigate trying to make the decoder run out of memory by sending a bogus image.
/// This is somewhat of a workaroud as ideally we would check against the expected file size
/// but that's not possible through the Read and Seek traits alone and would require the encoder
/// to provided with it from the caller.
///
/// NOTE: This is multiplied by 3 or 4 depending on the number of channels to get the maximum
/// starting buffer size. This amounts to about 134 mb for a buffer with 4 channels.
const MAX_INITIAL_PIXELS: usize = 8192 * 4096;

/// Sets all bytes in an mutable iterator over slices of bytes to 0.
fn blank_bytes<'a, T: Iterator<Item = &'a mut [u8]>>(iterator: T) {
    for chunk in iterator {
        for b in chunk {
            *b = 0;
        }
    }
}

/// Extend the buffer to `full_size`, copying existing data to the end of the buffer. Returns slice
/// pointing to the part of the buffer that is not yet filled in.
///
/// If blank is true, the bytes in the new buffer that are not filled in are set to 0.
/// This is used for rle-encoded images as the decoding process for these may not fill in all the
/// pixels.
///
/// As BMP images are usually stored with the rows upside-down we have to write the image data
/// starting at the end of the buffer and thus we have to make sure the existing data is put at the
/// end of the buffer.
#[inline(never)]
#[cold]
fn extend_buffer(buffer: &mut Vec<u8>, full_size: usize, blank: bool) -> &mut [u8] {
    let old_size = buffer.len();
    let extend = full_size - buffer.len();

    buffer.extend(repeat(0xFF).take(extend));
    assert_eq!(buffer.len(), full_size);

    let ret = if extend >= old_size {
        // If the full buffer length is more or equal to twice the initial one, we can simply
        // copy the data in the lower part of the buffer to the end of it and input from there.
        let (new, old) = buffer.split_at_mut(extend);
        old.copy_from_slice(&new[..old_size]);
        new
    } else {
        // If the full size is less than twice the initial buffer, we have to
        // copy in two steps
        let overlap = old_size - extend;

        // First we copy the data that fits into the bit we extended.
        let (lower, upper) = buffer.split_at_mut(old_size);
        upper.copy_from_slice(&lower[overlap..]);

        // Then we slide the data that hasn't been copied yet to the top of the buffer
        let (new, old) = lower.split_at_mut(extend);
        old[..overlap].copy_from_slice(&new[..overlap]);
        new
    };
    if blank {
        for b in ret.iter_mut() {
            *b = 0;
        }
    };
    ret
}

/// Call the provided function on each row of the provided buffer, returning Err if the provided
/// function returns an error, extends the buffer if it's not large enough.
fn with_rows<F>(
    buffer: &mut Vec<u8>,
    width: i32,
    height: i32,
    channels: usize,
    top_down: bool,
    mut func: F,
) -> io::Result<()>
where
    F: FnMut(&mut [u8]) -> io::Result<()>,
{
    // An overflow should already have been checked for when this is called,
    // though we check anyhow, as it somehow seems to increase performance slightly.
    let row_width = channels.checked_mul(width as usize).unwrap();
    let full_image_size = row_width.checked_mul(height as usize).unwrap();

    if !top_down {
        for row in buffer.chunks_mut(row_width).rev() {
            func(row)?;
        }

        // If we need more space, extend the buffer.
        if buffer.len() < full_image_size {
            let new_space = extend_buffer(buffer, full_image_size, false);
            for row in new_space.chunks_mut(row_width).rev() {
                func(row)?;
            }
        }
    } else {
        for row in buffer.chunks_mut(row_width) {
            func(row)?;
        }
        if buffer.len() < full_image_size {
            // If the image is stored in top-down order, we can simply use the extend function
            // from vec to extend the buffer..
            let extend = full_image_size - buffer.len();
            buffer.extend(repeat(0xFF).take(extend));
            let len = buffer.len();
            for row in buffer[len - row_width..].chunks_mut(row_width) {
                func(row)?;
            }
        };
    }
    Ok(())
}

fn set_8bit_pixel_run<'a, T: Iterator<Item = &'a u8>>(
    pixel_iter: &mut ChunksMut<u8>,
    palette: &[(u8, u8, u8)],
    indices: T,
    n_pixels: usize,
) -> bool {
    for idx in indices.take(n_pixels) {
        if let Some(pixel) = pixel_iter.next() {
            let (r, g, b) = palette[*idx as usize];
            pixel[0] = r;
            pixel[1] = g;
            pixel[2] = b;
        } else {
            return false;
        }
    }
    true
}

fn set_4bit_pixel_run<'a, T: Iterator<Item = &'a u8>>(
    pixel_iter: &mut ChunksMut<u8>,
    palette: &[(u8, u8, u8)],
    indices: T,
    mut n_pixels: usize,
) -> bool {
    for idx in indices {
        macro_rules! set_pixel {
            ($i:expr) => {
                if n_pixels == 0 {
                    break;
                }
                if let Some(pixel) = pixel_iter.next() {
                    let (r, g, b) = palette[$i as usize];
                    pixel[0] = r;
                    pixel[1] = g;
                    pixel[2] = b;
                } else {
                    return false;
                }
                n_pixels -= 1;
            };
        }
        set_pixel!(idx >> 4);
        set_pixel!(idx & 0xf);
    }
    true
}

#[rustfmt::skip]
fn set_2bit_pixel_run<'a, T: Iterator<Item = &'a u8>>(
    pixel_iter: &mut ChunksMut<u8>,
    palette: &[(u8, u8, u8)],
    indices: T,
    mut n_pixels: usize,
) -> bool {
    for idx in indices {
        macro_rules! set_pixel {
            ($i:expr) => {
                if n_pixels == 0 {
                    break;
                }
                if let Some(pixel) = pixel_iter.next() {
                    let (r, g, b) = palette[$i as usize];
                    pixel[0] = r;
                    pixel[1] = g;
                    pixel[2] = b;
                } else {
                    return false;
                }
                n_pixels -= 1;
            };
        }
        set_pixel!((idx >> 6) & 0x3u8);
        set_pixel!((idx >> 4) & 0x3u8);
        set_pixel!((idx >> 2) & 0x3u8);
        set_pixel!( idx       & 0x3u8);
    }
    true
}

fn set_1bit_pixel_run<'a, T: Iterator<Item = &'a u8>>(
    pixel_iter: &mut ChunksMut<u8>,
    palette: &[(u8, u8, u8)],
    indices: T,
) {
    for idx in indices {
        let mut bit = 0x80;
        loop {
            if let Some(pixel) = pixel_iter.next() {
                let (r, g, b) = palette[((idx & bit) != 0) as usize];
                pixel[0] = r;
                pixel[1] = g;
                pixel[2] = b;
            } else {
                return;
            }

            bit >>= 1;
            if bit == 0 {
                break;
            }
        }
    }
}

#[derive(PartialEq, Eq)]
struct Bitfield {
    shift: u32,
    len: u32,
}

impl Bitfield {
    fn from_mask(mask: u32, max_len: u32) -> ImageResult<Bitfield> {
        if mask == 0 {
            return Ok(Bitfield { shift: 0, len: 0 });
        }
        let mut shift = mask.trailing_zeros();
        let mut len = (!(mask >> shift)).trailing_zeros();
        if len != mask.count_ones() {
            return Err(DecoderError::BitfieldMaskNonContiguous.into());
        }
        if len + shift > max_len {
            return Err(DecoderError::BitfieldMaskInvalid.into());
        }
        if len > 8 {
            shift += len - 8;
            len = 8;
        }
        Ok(Bitfield { shift, len })
    }

    fn read(&self, data: u32) -> u8 {
        let data = data >> self.shift;
        match self.len {
            1 => ((data & 0b1) * 0xff) as u8,
            2 => ((data & 0b11) * 0x55) as u8,
            3 => LOOKUP_TABLE_3_BIT_TO_8_BIT[(data & 0b00_0111) as usize],
            4 => LOOKUP_TABLE_4_BIT_TO_8_BIT[(data & 0b00_1111) as usize],
            5 => LOOKUP_TABLE_5_BIT_TO_8_BIT[(data & 0b01_1111) as usize],
            6 => LOOKUP_TABLE_6_BIT_TO_8_BIT[(data & 0b11_1111) as usize],
            7 => ((data & 0x7f) << 1 | (data & 0x7f) >> 6) as u8,
            8 => (data & 0xff) as u8,
            _ => panic!(),
        }
    }
}

#[derive(PartialEq, Eq)]
struct Bitfields {
    r: Bitfield,
    g: Bitfield,
    b: Bitfield,
    a: Bitfield,
}

impl Bitfields {
    fn from_mask(
        r_mask: u32,
        g_mask: u32,
        b_mask: u32,
        a_mask: u32,
        max_len: u32,
    ) -> ImageResult<Bitfields> {
        let bitfields = Bitfields {
            r: Bitfield::from_mask(r_mask, max_len)?,
            g: Bitfield::from_mask(g_mask, max_len)?,
            b: Bitfield::from_mask(b_mask, max_len)?,
            a: Bitfield::from_mask(a_mask, max_len)?,
        };
        if bitfields.r.len == 0 || bitfields.g.len == 0 || bitfields.b.len == 0 {
            return Err(DecoderError::BitfieldMaskMissing(max_len).into());
        }
        Ok(bitfields)
    }
}

/// A bmp decoder
pub struct BmpDecoder<R> {
    reader: R,

    bmp_header_type: BMPHeaderType,

    width: i32,
    height: i32,
    data_offset: u64,
    top_down: bool,
    no_file_header: bool,
    add_alpha_channel: bool,
    has_loaded_metadata: bool,
    image_type: ImageType,

    bit_count: u16,
    colors_used: u32,
    palette: Option<Vec<(u8, u8, u8)>>,
    bitfields: Option<Bitfields>,
}

enum RLEInsn {
    EndOfFile,
    EndOfRow,
    Delta(u8, u8),
    Absolute(u8, Vec<u8>),
    PixelRun(u8, u8),
}

struct RLEInsnIterator<'a, R: 'a + Read> {
    r: &'a mut R,
    image_type: ImageType,
}

impl<'a, R: Read> Iterator for RLEInsnIterator<'a, R> {
    type Item = RLEInsn;

    fn next(&mut self) -> Option<RLEInsn> {
        let control_byte = match self.r.read_u8() {
            Ok(b) => b,
            Err(_) => return None,
        };

        match control_byte {
            RLE_ESCAPE => {
                let op = match self.r.read_u8() {
                    Ok(b) => b,
                    Err(_) => return None,
                };

                match op {
                    RLE_ESCAPE_EOL => Some(RLEInsn::EndOfRow),
                    RLE_ESCAPE_EOF => Some(RLEInsn::EndOfFile),
                    RLE_ESCAPE_DELTA => {
                        let xdelta = match self.r.read_u8() {
                            Ok(n) => n,
                            Err(_) => return None,
                        };
                        let ydelta = match self.r.read_u8() {
                            Ok(n) => n,
                            Err(_) => return None,
                        };
                        Some(RLEInsn::Delta(xdelta, ydelta))
                    }
                    _ => {
                        let mut length = op as usize;
                        if self.image_type == ImageType::RLE4 {
                            length = (length + 1) / 2;
                        }
                        length += length & 1;
                        let mut buffer = vec![0; length];
                        match self.r.read_exact(&mut buffer) {
                            Ok(()) => Some(RLEInsn::Absolute(op, buffer)),
                            Err(_) => None,
                        }
                    }
                }
            }
            _ => match self.r.read_u8() {
                Ok(palette_index) => Some(RLEInsn::PixelRun(control_byte, palette_index)),
                Err(_) => None,
            },
        }
    }
}

impl<R: Read + Seek> BmpDecoder<R> {
    /// Create a new decoder that decodes from the stream ```r```
    pub fn new(reader: R) -> ImageResult<BmpDecoder<R>> {
        let mut decoder = BmpDecoder {
            reader,

            bmp_header_type: BMPHeaderType::Info,

            width: 0,
            height: 0,
            data_offset: 0,
            top_down: false,
            no_file_header: false,
            add_alpha_channel: false,
            has_loaded_metadata: false,
            image_type: ImageType::Palette,

            bit_count: 0,
            colors_used: 0,
            palette: None,
            bitfields: None,
        };

        decoder.read_metadata()?;
        Ok(decoder)
    }

    #[cfg(feature = "ico")]
    pub(crate) fn new_with_ico_format(reader: R) -> ImageResult<BmpDecoder<R>> {
        let mut decoder = BmpDecoder {
            reader,

            bmp_header_type: BMPHeaderType::Info,

            width: 0,
            height: 0,
            data_offset: 0,
            top_down: false,
            no_file_header: false,
            add_alpha_channel: false,
            has_loaded_metadata: false,
            image_type: ImageType::Palette,

            bit_count: 0,
            colors_used: 0,
            palette: None,
            bitfields: None,
        };

        decoder.read_metadata_in_ico_format()?;
        Ok(decoder)
    }

    #[cfg(feature = "ico")]
    pub(crate) fn reader(&mut self) -> &mut R {
        &mut self.reader
    }

    fn read_file_header(&mut self) -> ImageResult<()> {
        if self.no_file_header {
            return Ok(());
        }
        let mut signature = [0; 2];
        self.reader.read_exact(&mut signature)?;

        if signature != b"BM"[..] {
            return Err(DecoderError::BmpSignatureInvalid.into());
        }

        // The next 8 bytes represent file size, followed the 4 reserved bytes
        // We're not interesting these values
        self.reader.read_u32::<LittleEndian>()?;
        self.reader.read_u32::<LittleEndian>()?;

        self.data_offset = u64::from(self.reader.read_u32::<LittleEndian>()?);

        Ok(())
    }

    /// Read BITMAPCOREHEADER https://msdn.microsoft.com/en-us/library/vs/alm/dd183372(v=vs.85).aspx
    ///
    /// returns Err if any of the values are invalid.
    fn read_bitmap_core_header(&mut self) -> ImageResult<()> {
        // As height/width values in BMP files with core headers are only 16 bits long,
        // they won't be larger than `MAX_WIDTH_HEIGHT`.
        self.width = i32::from(self.reader.read_u16::<LittleEndian>()?);
        self.height = i32::from(self.reader.read_u16::<LittleEndian>()?);

        check_for_overflow(self.width, self.height, self.num_channels())?;

        // Number of planes (format specifies that this should be 1).
        if self.reader.read_u16::<LittleEndian>()? != 1 {
            return Err(DecoderError::MoreThanOnePlane.into());
        }

        self.bit_count = self.reader.read_u16::<LittleEndian>()?;
        self.image_type = match self.bit_count {
            1 | 4 | 8 => ImageType::Palette,
            24 => ImageType::RGB24,
            _ => return Err(DecoderError::InvalidChannelWidth(ChannelWidthError::Rgb, self.bit_count).into()),
        };

        Ok(())
    }

    /// Read BITMAPINFOHEADER https://msdn.microsoft.com/en-us/library/vs/alm/dd183376(v=vs.85).aspx
    /// or BITMAPV{2|3|4|5}HEADER.
    ///
    /// returns Err if any of the values are invalid.
    fn read_bitmap_info_header(&mut self) -> ImageResult<()> {
        self.width = self.reader.read_i32::<LittleEndian>()?;
        self.height = self.reader.read_i32::<LittleEndian>()?;

        // Width can not be negative
        if self.width < 0 {
            return Err(DecoderError::NegativeWidth(self.width).into());
        } else if self.width > MAX_WIDTH_HEIGHT || self.height > MAX_WIDTH_HEIGHT {
            // Limit very large image sizes to avoid OOM issues. Images with these sizes are
            // unlikely to be valid anyhow.
            return Err(DecoderError::ImageTooLarge(self.width, self.height).into());
        }

        if self.height == i32::min_value() {
            return Err(DecoderError::InvalidHeight.into());
        }

        // A negative height indicates a top-down DIB.
        if self.height < 0 {
            self.height *= -1;
            self.top_down = true;
        }

        check_for_overflow(self.width, self.height, self.num_channels())?;

        // Number of planes (format specifies that this should be 1).
        if self.reader.read_u16::<LittleEndian>()? != 1 {
            return Err(DecoderError::MoreThanOnePlane.into());
        }

        self.bit_count = self.reader.read_u16::<LittleEndian>()?;
        let image_type_u32 = self.reader.read_u32::<LittleEndian>()?;

        // Top-down dibs can not be compressed.
        if self.top_down && image_type_u32 != 0 && image_type_u32 != 3 {
            return Err(DecoderError::ImageTypeInvalidForTopDown(image_type_u32).into());
        }
        self.image_type = match image_type_u32 {
            0 => match self.bit_count {
                1 | 2 | 4 | 8 => ImageType::Palette,
                16 => ImageType::RGB16,
                24 => ImageType::RGB24,
                32 if self.add_alpha_channel => ImageType::RGBA32,
                32 => ImageType::RGB32,
                _ => return Err(DecoderError::InvalidChannelWidth(ChannelWidthError::Rgb, self.bit_count).into()),
            },
            1 => match self.bit_count {
                8 => ImageType::RLE8,
                _ => return Err(DecoderError::InvalidChannelWidth(ChannelWidthError::Rle8, self.bit_count).into()),
            },
            2 => match self.bit_count {
                4 => ImageType::RLE4,
                _ => return Err(DecoderError::InvalidChannelWidth(ChannelWidthError::Rle4, self.bit_count).into()),
            },
            3 => match self.bit_count {
                16 => ImageType::Bitfields16,
                32 => ImageType::Bitfields32,
                _ => return Err(DecoderError::InvalidChannelWidth(ChannelWidthError::Bitfields, self.bit_count).into()),
            },
            4 => {
                // JPEG compression is not implemented yet.
                return Err(ImageError::Unsupported(
                    UnsupportedError::from_format_and_kind(
                        ImageFormat::Bmp.into(),
                        UnsupportedErrorKind::GenericFeature("JPEG compression".to_owned()),
                    ),
                ));
            }
            5 => {
                // PNG compression is not implemented yet.
                return Err(ImageError::Unsupported(
                    UnsupportedError::from_format_and_kind(
                        ImageFormat::Bmp.into(),
                        UnsupportedErrorKind::GenericFeature("PNG compression".to_owned()),
                    ),
                ));
            }
            11 | 12 | 13 => {
                // CMYK types are not implemented yet.
                return Err(ImageError::Unsupported(
                    UnsupportedError::from_format_and_kind(
                        ImageFormat::Bmp.into(),
                        UnsupportedErrorKind::GenericFeature("CMYK format".to_owned()),
                    ),
                ));
            }
            _ => {
                // Unknown compression type.
                return Err(DecoderError::ImageTypeUnknown(image_type_u32).into())
            }
        };

        // The next 12 bytes represent data array size in bytes,
        // followed the horizontal and vertical printing resolutions
        // We will calculate the pixel array size using width & height of image
        // We're not interesting the horz or vert printing resolutions
        self.reader.read_u32::<LittleEndian>()?;
        self.reader.read_u32::<LittleEndian>()?;
        self.reader.read_u32::<LittleEndian>()?;

        self.colors_used = self.reader.read_u32::<LittleEndian>()?;

        // The next 4 bytes represent number of "important" colors
        // We're not interested in this value, so we'll skip it
        self.reader.read_u32::<LittleEndian>()?;

        Ok(())
    }

    fn read_bitmasks(&mut self) -> ImageResult<()> {
        let r_mask = self.reader.read_u32::<LittleEndian>()?;
        let g_mask = self.reader.read_u32::<LittleEndian>()?;
        let b_mask = self.reader.read_u32::<LittleEndian>()?;

        let a_mask = match self.bmp_header_type {
            BMPHeaderType::V3 | BMPHeaderType::V4 | BMPHeaderType::V5 => {
                self.reader.read_u32::<LittleEndian>()?
            }
            _ => 0,
        };

        self.bitfields = match self.image_type {
            ImageType::Bitfields16 => {
                Some(Bitfields::from_mask(r_mask, g_mask, b_mask, a_mask, 16)?)
            }
            ImageType::Bitfields32 => {
                Some(Bitfields::from_mask(r_mask, g_mask, b_mask, a_mask, 32)?)
            }
            _ => None,
        };

        if self.bitfields.is_some() && a_mask != 0 {
            self.add_alpha_channel = true;
        }

        Ok(())
    }

    fn read_metadata(&mut self) -> ImageResult<()> {
        if !self.has_loaded_metadata {
            self.read_file_header()?;
            let bmp_header_offset = self.reader.seek(SeekFrom::Current(0))?;
            let bmp_header_size = self.reader.read_u32::<LittleEndian>()?;
            let bmp_header_end = bmp_header_offset + u64::from(bmp_header_size);

            self.bmp_header_type = match bmp_header_size {
                BITMAPCOREHEADER_SIZE => BMPHeaderType::Core,
                BITMAPINFOHEADER_SIZE => BMPHeaderType::Info,
                BITMAPV2HEADER_SIZE => BMPHeaderType::V2,
                BITMAPV3HEADER_SIZE => BMPHeaderType::V3,
                BITMAPV4HEADER_SIZE => BMPHeaderType::V4,
                BITMAPV5HEADER_SIZE => BMPHeaderType::V5,
                _ if bmp_header_size < BITMAPCOREHEADER_SIZE => {
                    // Size of any valid header types won't be smaller than core header type.
                    return Err(DecoderError::HeaderTooSmall(bmp_header_size).into());
                }
                _ => {
                    return Err(ImageError::Unsupported(
                        UnsupportedError::from_format_and_kind(
                            ImageFormat::Bmp.into(),
                            UnsupportedErrorKind::GenericFeature(format!(
                                "Unknown bitmap header type (size={})",
                                bmp_header_size
                            )),
                        ),
                    ))
                }
            };

            match self.bmp_header_type {
                BMPHeaderType::Core => {
                    self.read_bitmap_core_header()?;
                }
                BMPHeaderType::Info
                | BMPHeaderType::V2
                | BMPHeaderType::V3
                | BMPHeaderType::V4
                | BMPHeaderType::V5 => {
                    self.read_bitmap_info_header()?;
                }
            };

            match self.image_type {
                ImageType::Bitfields16 | ImageType::Bitfields32 => self.read_bitmasks()?,
                _ => {}
            };

            self.reader.seek(SeekFrom::Start(bmp_header_end))?;

            match self.image_type {
                ImageType::Palette | ImageType::RLE4 | ImageType::RLE8 => self.read_palette()?,
                _ => {}
            };

            if self.no_file_header {
                // Use the offset of the end of metadata instead of reading a BMP file header.
                self.data_offset = self.reader.seek(SeekFrom::Current(0))?;
            }

            self.has_loaded_metadata = true;
        }
        Ok(())
    }

    #[cfg(feature = "ico")]
    #[doc(hidden)]
    pub fn read_metadata_in_ico_format(&mut self) -> ImageResult<()> {
        self.no_file_header = true;
        self.add_alpha_channel = true;
        self.read_metadata()?;

        // The height field in an ICO file is doubled to account for the AND mask
        // (whether or not an AND mask is actually present).
        self.height /= 2;
        Ok(())
    }

    fn get_palette_size(&mut self) -> ImageResult<usize> {
        match self.colors_used {
            0 => Ok(1 << self.bit_count),
            _ => {
                if self.colors_used > 1 << self.bit_count {
                    return Err(DecoderError::PaletteSizeExceeded {
                        colors_used: self.colors_used,
                        bit_count: self.bit_count
                    }.into());
                }
                Ok(self.colors_used as usize)
            }
        }
    }

    fn bytes_per_color(&self) -> usize {
        match self.bmp_header_type {
            BMPHeaderType::Core => 3,
            _ => 4,
        }
    }

    fn read_palette(&mut self) -> ImageResult<()> {
        const MAX_PALETTE_SIZE: usize = 256; // Palette indices are u8.

        let bytes_per_color = self.bytes_per_color();
        let palette_size = self.get_palette_size()?;
        let max_length = MAX_PALETTE_SIZE * bytes_per_color;

        let length = palette_size * bytes_per_color;
        let mut buf = Vec::with_capacity(max_length);

        // Resize and read the palette entries to the buffer.
        // We limit the buffer to at most 256 colours to avoid any oom issues as
        // 8-bit images can't reference more than 256 indexes anyhow.
        buf.resize(cmp::min(length, max_length), 0);
        self.reader.by_ref().read_exact(&mut buf)?;

        // Allocate 256 entries even if palette_size is smaller, to prevent corrupt files from
        // causing an out-of-bounds array access.
        match length.cmp(&max_length) {
            Ordering::Greater => {
                self.reader
                    .seek(SeekFrom::Current((length - max_length) as i64))?;
            }
            Ordering::Less => buf.resize(max_length, 0),
            Ordering::Equal => (),
        }

        let p: Vec<(u8, u8, u8)> = (0..MAX_PALETTE_SIZE)
            .map(|i| {
                let b = buf[bytes_per_color * i];
                let g = buf[bytes_per_color * i + 1];
                let r = buf[bytes_per_color * i + 2];
                (r, g, b)
            })
            .collect();

        self.palette = Some(p);

        Ok(())
    }

    fn num_channels(&self) -> usize {
        if self.add_alpha_channel {
            4
        } else {
            3
        }
    }

    /// Create a buffer to hold the decoded pixel data.
    ///
    /// The buffer will be large enough to hold the whole image if it requires less than
    /// `MAX_INITIAL_PIXELS` times the number of channels bytes (adjusted to line up with the
    /// width of a row).
    fn create_pixel_data(&self) -> Vec<u8> {
        let row_width = self.num_channels() * self.width as usize;
        let max_pixels = self.num_channels() * MAX_INITIAL_PIXELS;
        // Make sure the maximum size is whole number of rows.
        let max_starting_size = max_pixels + row_width - (max_pixels % row_width);
        // The buffer has its bytes initially set to 0xFF as the ICO decoder relies on it.
        vec![0xFF; cmp::min(row_width * self.height as usize, max_starting_size)]
    }

    fn rows<'a>(&self, pixel_data: &'a mut [u8]) -> RowIterator<'a> {
        let stride = self.width as usize * self.num_channels();
        if self.top_down {
            RowIterator {
                chunks: Chunker::FromTop(pixel_data.chunks_mut(stride)),
            }
        } else {
            RowIterator {
                chunks: Chunker::FromBottom(pixel_data.chunks_mut(stride).rev()),
            }
        }
    }

    fn read_palettized_pixel_data(&mut self) -> ImageResult<Vec<u8>> {
        let mut pixel_data = self.create_pixel_data();
        let num_channels = self.num_channels();
        let row_byte_length = ((i32::from(self.bit_count) * self.width + 31) / 32 * 4) as usize;
        let mut indices = vec![0; row_byte_length];
        let palette = self.palette.as_ref().unwrap();
        let bit_count = self.bit_count;
        let reader = &mut self.reader;
        let width = self.width as usize;

        reader.seek(SeekFrom::Start(self.data_offset))?;

        with_rows(
            &mut pixel_data,
            self.width,
            self.height,
            num_channels,
            self.top_down,
            |row| {
                reader.read_exact(&mut indices)?;
                let mut pixel_iter = row.chunks_mut(num_channels);
                match bit_count {
                    1 => {
                        set_1bit_pixel_run(&mut pixel_iter, palette, indices.iter());
                    }
                    2 => {
                        set_2bit_pixel_run(&mut pixel_iter, palette, indices.iter(), width);
                    }
                    4 => {
                        set_4bit_pixel_run(&mut pixel_iter, palette, indices.iter(), width);
                    }
                    8 => {
                        set_8bit_pixel_run(&mut pixel_iter, palette, indices.iter(), width);
                    }
                    _ => panic!(),
                };
                Ok(())
            },
        )?;

        Ok(pixel_data)
    }

    fn read_16_bit_pixel_data(&mut self, bitfields: Option<&Bitfields>) -> ImageResult<Vec<u8>> {
        let mut pixel_data = self.create_pixel_data();
        let num_channels = self.num_channels();
        let row_padding_len = self.width as usize % 2 * 2;
        let row_padding = &mut [0; 2][..row_padding_len];
        let bitfields = match bitfields {
            Some(b) => b,
            None => self.bitfields.as_ref().unwrap(),
        };
        let reader = &mut self.reader;

        reader.seek(SeekFrom::Start(self.data_offset))?;

        with_rows(
            &mut pixel_data,
            self.width,
            self.height,
            num_channels,
            self.top_down,
            |row| {
                for pixel in row.chunks_mut(num_channels) {
                    let data = u32::from(reader.read_u16::<LittleEndian>()?);

                    pixel[0] = bitfields.r.read(data);
                    pixel[1] = bitfields.g.read(data);
                    pixel[2] = bitfields.b.read(data);
                    if num_channels == 4 {
                        pixel[3] = bitfields.a.read(data);
                    }
                }
                reader.read_exact(row_padding)
            },
        )?;

        Ok(pixel_data)
    }

    /// Read image data from a reader in 32-bit formats that use bitfields.
    fn read_32_bit_pixel_data(&mut self) -> ImageResult<Vec<u8>> {
        let mut pixel_data = self.create_pixel_data();
        let num_channels = self.num_channels();

        let bitfields = self.bitfields.as_ref().unwrap();

        let reader = &mut self.reader;
        reader.seek(SeekFrom::Start(self.data_offset))?;

        with_rows(
            &mut pixel_data,
            self.width,
            self.height,
            num_channels,
            self.top_down,
            |row| {
                for pixel in row.chunks_mut(num_channels) {
                    let data = reader.read_u32::<LittleEndian>()?;

                    pixel[0] = bitfields.r.read(data);
                    pixel[1] = bitfields.g.read(data);
                    pixel[2] = bitfields.b.read(data);
                    if num_channels == 4 {
                        pixel[3] = bitfields.a.read(data);
                    }
                }
                Ok(())
            },
        )?;

        Ok(pixel_data)
    }

    /// Read image data from a reader where the colours are stored as 8-bit values (24 or 32-bit).
    fn read_full_byte_pixel_data(&mut self, format: &FormatFullBytes) -> ImageResult<Vec<u8>> {
        let mut pixel_data = self.create_pixel_data();
        let num_channels = self.num_channels();
        let row_padding_len = match *format {
            FormatFullBytes::RGB24 => (4 - (self.width as usize * 3) % 4) % 4,
            _ => 0,
        };
        let row_padding = &mut [0; 4][..row_padding_len];

        self.reader.seek(SeekFrom::Start(self.data_offset))?;

        let reader = &mut self.reader;

        with_rows(
            &mut pixel_data,
            self.width,
            self.height,
            num_channels,
            self.top_down,
            |row| {
                for pixel in row.chunks_mut(num_channels) {
                    if *format == FormatFullBytes::Format888 {
                        reader.read_u8()?;
                    }

                    // Read the colour values (b, g, r).
                    // Reading 3 bytes and reversing them is significantly faster than reading one
                    // at a time.
                    reader.read_exact(&mut pixel[0..3])?;
                    pixel[0..3].reverse();

                    if *format == FormatFullBytes::RGB32 {
                        reader.read_u8()?;
                    }

                    // Read the alpha channel if present
                    if *format == FormatFullBytes::RGBA32 {
                        reader.read_exact(&mut pixel[3..4])?;
                    }
                }
                reader.read_exact(row_padding)
            },
        )?;

        Ok(pixel_data)
    }

    fn read_rle_data(&mut self, image_type: ImageType) -> ImageResult<Vec<u8>> {
        // Seek to the start of the actual image data.
        self.reader.seek(SeekFrom::Start(self.data_offset))?;

        let full_image_size =
            num_bytes(self.width, self.height, self.num_channels()).ok_or_else(|| {
                ImageError::Unsupported(UnsupportedError::from_format_and_kind(
                    ImageFormat::Bmp.into(),
                    UnsupportedErrorKind::GenericFeature(format!("Image dimensions ({}x{} w/{} channels) are too large",
                        self.width, self.height, self.num_channels()))))
            })?;
        let mut pixel_data = self.create_pixel_data();
        let (skip_pixels, skip_rows, eof_hit) =
            self.read_rle_data_step(&mut pixel_data, image_type, 0, 0)?;
        // Extend the buffer if there is still data left.
        // If eof_hit is true, it means that we hit an end-of-file marker in the last step and
        // we won't extend the buffer further to avoid small files with a large specified size causing memory issues.
        // This is only a rudimentary check, a file could still create a large buffer, but the
        // file would now have to at least have some data in it.
        if pixel_data.len() < full_image_size && !eof_hit {
            let new = extend_buffer(&mut pixel_data, full_image_size, true);
            self.read_rle_data_step(new, image_type, skip_pixels, skip_rows)?;
        }
        Ok(pixel_data)
    }

    fn read_rle_data_step(
        &mut self,
        mut pixel_data: &mut [u8],
        image_type: ImageType,
        skip_pixels: u8,
        skip_rows: u8,
    ) -> ImageResult<(u8, u8, bool)> {
        let num_channels = self.num_channels();

        let mut delta_rows_left = 0;
        let mut delta_pixels_left = skip_pixels;
        let mut eof_hit = false;

        // Scope the borrowing of pixel_data by the row iterator.
        {
            // Handling deltas in the RLE scheme means that we need to manually
            // iterate through rows and pixels.  Even if we didn't have to handle
            // deltas, we have to ensure that a single runlength doesn't straddle
            // two rows.
            let mut row_iter = self.rows(&mut pixel_data);
            // If we have previously hit a delta value,
            // blank the rows that are to be skipped.
            blank_bytes((&mut row_iter).take(skip_rows.into()));
            let mut insns_iter = RLEInsnIterator {
                r: &mut self.reader,
                image_type,
            };
            let p = self.palette.as_ref().unwrap();

            'row_loop: while let Some(row) = row_iter.next() {
                let mut pixel_iter = row.chunks_mut(num_channels);
                // Blank delta skipped pixels if any.
                blank_bytes((&mut pixel_iter).take(delta_pixels_left.into()));
                delta_pixels_left = 0;

                'rle_loop: loop {
                    if let Some(insn) = insns_iter.next() {
                        match insn {
                            RLEInsn::EndOfFile => {
                                blank_bytes(pixel_iter);
                                blank_bytes(row_iter);
                                eof_hit = true;
                                break 'row_loop;
                            }
                            RLEInsn::EndOfRow => {
                                blank_bytes(pixel_iter);
                                break 'rle_loop;
                            }
                            RLEInsn::Delta(x_delta, y_delta) => {
                                if y_delta > 0 {
                                    for n in 1..y_delta {
                                        if let Some(row) = row_iter.next() {
                                            // The msdn site on bitmap compression doesn't specify
                                            // what happens to the values skipped when encountering
                                            // a delta code, however IE and the windows image
                                            // preview seems to replace them with black pixels,
                                            // so we stick to that.
                                            for b in row {
                                                *b = 0;
                                            }
                                        } else {
                                            delta_pixels_left = x_delta;
                                            // We've reached the end of the buffer.
                                            delta_rows_left = y_delta - n;
                                            break 'row_loop;
                                        }
                                    }
                                }

                                for _ in 0..x_delta {
                                    if let Some(pixel) = pixel_iter.next() {
                                        for b in pixel {
                                            *b = 0;
                                        }
                                    } else {
                                        // We can't go any further in this row.
                                        break;
                                    }
                                }
                            }
                            RLEInsn::Absolute(length, indices) => {
                                // Absolute mode cannot span rows, so if we run
                                // out of pixels to process, we should stop
                                // processing the image.
                                match image_type {
                                    ImageType::RLE8 => {
                                        if !set_8bit_pixel_run(
                                            &mut pixel_iter,
                                            p,
                                            indices.iter(),
                                            length as usize,
                                        ) {
                                            break 'row_loop;
                                        }
                                    }
                                    ImageType::RLE4 => {
                                        if !set_4bit_pixel_run(
                                            &mut pixel_iter,
                                            p,
                                            indices.iter(),
                                            length as usize,
                                        ) {
                                            break 'row_loop;
                                        }
                                    }
                                    _ => panic!(),
                                }
                            }
                            RLEInsn::PixelRun(n_pixels, palette_index) => {
                                // A pixel run isn't allowed to span rows, but we
                                // simply continue on to the next row if we run
                                // out of pixels to set.
                                match image_type {
                                    ImageType::RLE8 => {
                                        if !set_8bit_pixel_run(
                                            &mut pixel_iter,
                                            p,
                                            repeat(&palette_index),
                                            n_pixels as usize,
                                        ) {
                                            break 'rle_loop;
                                        }
                                    }
                                    ImageType::RLE4 => {
                                        if !set_4bit_pixel_run(
                                            &mut pixel_iter,
                                            p,
                                            repeat(&palette_index),
                                            n_pixels as usize,
                                        ) {
                                            break 'rle_loop;
                                        }
                                    }
                                    _ => panic!(),
                                }
                            }
                        }
                    } else {
                        // We ran out of data while we still had rows to fill in.
                        return Err(DecoderError::RleDataTooShort.into());
                    }
                }
            }
        }
        Ok((delta_pixels_left, delta_rows_left, eof_hit))
    }

    /// Read the actual data of the image. This function is deliberately not public because it
    /// cannot be called multiple times without seeking back the underlying reader in between.
    pub(crate) fn read_image_data(&mut self, buf: &mut [u8]) -> ImageResult<()> {
        let data = match self.image_type {
            ImageType::Palette => self.read_palettized_pixel_data(),
            ImageType::RGB16 => self.read_16_bit_pixel_data(Some(&R5_G5_B5_COLOR_MASK)),
            ImageType::RGB24 => self.read_full_byte_pixel_data(&FormatFullBytes::RGB24),
            ImageType::RGB32 => self.read_full_byte_pixel_data(&FormatFullBytes::RGB32),
            ImageType::RGBA32 => self.read_full_byte_pixel_data(&FormatFullBytes::RGBA32),
            ImageType::RLE8 => self.read_rle_data(ImageType::RLE8),
            ImageType::RLE4 => self.read_rle_data(ImageType::RLE4),
            ImageType::Bitfields16 => match self.bitfields {
                Some(_) => self.read_16_bit_pixel_data(None),
                None => Err(DecoderError::BitfieldMasksMissing(16).into()),
            },
            ImageType::Bitfields32 => match self.bitfields {
                Some(R8_G8_B8_COLOR_MASK) => {
                    self.read_full_byte_pixel_data(&FormatFullBytes::Format888)
                }
                Some(_) => self.read_32_bit_pixel_data(),
                None => Err(DecoderError::BitfieldMasksMissing(32).into()),
            },
        }?;

        buf.copy_from_slice(&data);
        Ok(())
    }
}

/// Wrapper struct around a `Cursor<Vec<u8>>`
pub struct BmpReader<R>(Cursor<Vec<u8>>, PhantomData<R>);
impl<R> Read for BmpReader<R> {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        self.0.read(buf)
    }
    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
        if self.0.position() == 0 && buf.is_empty() {
            mem::swap(buf, self.0.get_mut());
            Ok(buf.len())
        } else {
            self.0.read_to_end(buf)
        }
    }
}

impl<'a, R: 'a + Read + Seek> ImageDecoder<'a> for BmpDecoder<R> {
    type Reader = BmpReader<R>;

    fn dimensions(&self) -> (u32, u32) {
        (self.width as u32, self.height as u32)
    }

    fn color_type(&self) -> ColorType {
        if self.add_alpha_channel {
            ColorType::Rgba8
        } else {
            ColorType::Rgb8
        }
    }

    fn into_reader(self) -> ImageResult<Self::Reader> {
        Ok(BmpReader(Cursor::new(image::decoder_to_vec(self)?), PhantomData))
    }

    fn read_image(mut self, buf: &mut [u8]) -> ImageResult<()> {
        assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));
        self.read_image_data(buf)
    }
}

impl<'a, R: 'a + Read + Seek> ImageDecoderExt<'a> for BmpDecoder<R> {
    fn read_rect_with_progress<F: Fn(Progress)>(
        &mut self,
        x: u32,
        y: u32,
        width: u32,
        height: u32,
        buf: &mut [u8],
        progress_callback: F,
    ) -> ImageResult<()> {
        let start = self.reader.seek(SeekFrom::Current(0))?;
        image::load_rect(x, y, width, height, buf, progress_callback, self, |_, _| unreachable!(),
                         |s, buf| s.read_image_data(buf))?;
        self.reader.seek(SeekFrom::Start(start))?;
        Ok(())
    }
}

#[cfg(test)]
mod test {
    use super::Bitfield;

    #[test]
    fn test_bitfield_len() {
        for len in 1..9 {
            let bitfield = Bitfield { shift: 0, len };
            for i in 0..(1 << len) {
                let read = bitfield.read(i);
                let calc = (i as f64 / ((1 << len) - 1) as f64 * 255f64).round() as u8;
                if read != calc {
                    println!("len:{} i:{} read:{} calc:{}", len, i, read, calc);
                }
                assert_eq!(read, calc);
            }
        }
    }
}