use byteorder::{LittleEndian, WriteBytesExt};
use std::io::{self, Write};
use crate::color;
use crate::error::{ImageError, ImageResult, ParameterError, ParameterErrorKind};
use crate::image::ImageEncoder;
const BITMAPFILEHEADER_SIZE: u32 = 14;
const BITMAPINFOHEADER_SIZE: u32 = 40;
const BITMAPV4HEADER_SIZE: u32 = 108;
pub struct BmpEncoder<'a, W: 'a> {
writer: &'a mut W,
}
#[allow(dead_code)]
#[deprecated(note = "Use `BmpEncoder` instead")]
pub type BMPEncoder<'a, W> = BmpEncoder<'a, W>;
impl<'a, W: Write + 'a> BmpEncoder<'a, W> {
pub fn new(w: &'a mut W) -> Self {
BmpEncoder { writer: w }
}
pub fn encode(
&mut self,
image: &[u8],
width: u32,
height: u32,
c: color::ColorType,
) -> ImageResult<()> {
let bmp_header_size = BITMAPFILEHEADER_SIZE;
let (dib_header_size, written_pixel_size, palette_color_count) = get_pixel_info(c)?;
let row_pad_size = (4 - (width * written_pixel_size) % 4) % 4;
let image_size = width
.checked_mul(height)
.and_then(|v| v.checked_mul(written_pixel_size))
.and_then(|v| v.checked_add(height * row_pad_size))
.ok_or_else(|| {
ImageError::Parameter(ParameterError::from_kind(
ParameterErrorKind::DimensionMismatch,
))
})?;
let palette_size = palette_color_count * 4;
let file_size = bmp_header_size + dib_header_size + palette_size + image_size;
self.writer.write_u8(b'B')?;
self.writer.write_u8(b'M')?;
self.writer.write_u32::<LittleEndian>(file_size)?;
self.writer.write_u16::<LittleEndian>(0)?;
self.writer.write_u16::<LittleEndian>(0)?;
self.writer
.write_u32::<LittleEndian>(bmp_header_size + dib_header_size + palette_size)?;
self.writer.write_u32::<LittleEndian>(dib_header_size)?;
self.writer.write_i32::<LittleEndian>(width as i32)?;
self.writer.write_i32::<LittleEndian>(height as i32)?;
self.writer.write_u16::<LittleEndian>(1)?;
self.writer
.write_u16::<LittleEndian>((written_pixel_size * 8) as u16)?;
if dib_header_size >= BITMAPV4HEADER_SIZE {
self.writer.write_u32::<LittleEndian>(3)?;
} else {
self.writer.write_u32::<LittleEndian>(0)?;
}
self.writer.write_u32::<LittleEndian>(image_size)?;
self.writer.write_i32::<LittleEndian>(0)?;
self.writer.write_i32::<LittleEndian>(0)?;
self.writer.write_u32::<LittleEndian>(palette_color_count)?;
self.writer.write_u32::<LittleEndian>(0)?;
if dib_header_size >= BITMAPV4HEADER_SIZE {
self.writer.write_u32::<LittleEndian>(0xff << 16)?;
self.writer.write_u32::<LittleEndian>(0xff << 8)?;
self.writer.write_u32::<LittleEndian>(0xff)?;
self.writer.write_u32::<LittleEndian>(0xff << 24)?;
self.writer.write_u32::<LittleEndian>(0x73524742)?;
for _ in 0..12 {
self.writer.write_u32::<LittleEndian>(0)?;
}
}
match c {
color::ColorType::Rgb8 => {
self.encode_rgb(image, width, height, row_pad_size, 3)?
}
color::ColorType::Rgba8 => {
self.encode_rgba(image, width, height, row_pad_size, 4)?
}
color::ColorType::L8 => {
self.encode_gray(image, width, height, row_pad_size, 1)?
}
color::ColorType::La8 => {
self.encode_gray(image, width, height, row_pad_size, 2)?
}
_ => {
return Err(ImageError::IoError(io::Error::new(
io::ErrorKind::InvalidInput,
&get_unsupported_error_message(c)[..],
)))
}
}
Ok(())
}
fn encode_rgb(
&mut self,
image: &[u8],
width: u32,
height: u32,
row_pad_size: u32,
bytes_per_pixel: u32,
) -> io::Result<()> {
let width = width as usize;
let height = height as usize;
let x_stride = bytes_per_pixel as usize;
let y_stride = width * x_stride;
for row in (0..height).rev() {
let row_start = row * y_stride;
for px in image[row_start..][..y_stride].chunks_exact(x_stride) {
let r = px[0];
let g = px[1];
let b = px[2];
self.writer.write_all(&[b, g, r])?;
}
self.write_row_pad(row_pad_size)?;
}
Ok(())
}
fn encode_rgba(
&mut self,
image: &[u8],
width: u32,
height: u32,
row_pad_size: u32,
bytes_per_pixel: u32,
) -> io::Result<()> {
let width = width as usize;
let height = height as usize;
let x_stride = bytes_per_pixel as usize;
let y_stride = width * x_stride;
for row in (0..height).rev() {
let row_start = row * y_stride;
for px in image[row_start..][..y_stride].chunks_exact(x_stride) {
let r = px[0];
let g = px[1];
let b = px[2];
let a = px[3];
self.writer.write_all(&[b, g, r, a])?;
}
self.write_row_pad(row_pad_size)?;
}
Ok(())
}
fn encode_gray(
&mut self,
image: &[u8],
width: u32,
height: u32,
row_pad_size: u32,
bytes_per_pixel: u32,
) -> io::Result<()> {
for val in 0u8..=255 {
self.writer.write_all(&[val, val, val, 0])?;
}
let x_stride = bytes_per_pixel;
let y_stride = width * x_stride;
for row in (0..height).rev() {
let row_start = row * y_stride;
for col in 0..width {
let pixel_start = (row_start + (col * x_stride)) as usize;
self.writer.write_u8(image[pixel_start])?;
}
self.write_row_pad(row_pad_size)?;
}
Ok(())
}
fn write_row_pad(&mut self, row_pad_size: u32) -> io::Result<()> {
for _ in 0..row_pad_size {
self.writer.write_u8(0)?;
}
Ok(())
}
}
impl<'a, W: Write> ImageEncoder for BmpEncoder<'a, W> {
fn write_image(
mut self,
buf: &[u8],
width: u32,
height: u32,
color_type: color::ColorType,
) -> ImageResult<()> {
self.encode(buf, width, height, color_type)
}
}
fn get_unsupported_error_message(c: color::ColorType) -> String {
format!(
"Unsupported color type {:?}. Supported types: RGB(8), RGBA(8), Gray(8), GrayA(8).",
c
)
}
fn get_pixel_info(c: color::ColorType) -> io::Result<(u32, u32, u32)> {
let sizes = match c {
color::ColorType::Rgb8 => (BITMAPINFOHEADER_SIZE, 3, 0),
color::ColorType::Rgba8 => (BITMAPV4HEADER_SIZE, 4, 0),
color::ColorType::L8 => (BITMAPINFOHEADER_SIZE, 1, 256),
color::ColorType::La8 => (BITMAPINFOHEADER_SIZE, 1, 256),
_ => {
return Err(io::Error::new(
io::ErrorKind::InvalidInput,
&get_unsupported_error_message(c)[..],
))
}
};
Ok(sizes)
}
#[cfg(test)]
mod tests {
use super::super::BmpDecoder;
use super::BmpEncoder;
use crate::color::ColorType;
use crate::image::ImageDecoder;
use std::io::Cursor;
fn round_trip_image(image: &[u8], width: u32, height: u32, c: ColorType) -> Vec<u8> {
let mut encoded_data = Vec::new();
{
let mut encoder = BmpEncoder::new(&mut encoded_data);
encoder
.encode(&image, width, height, c)
.expect("could not encode image");
}
let decoder = BmpDecoder::new(Cursor::new(&encoded_data)).expect("failed to decode");
let mut buf = vec![0; decoder.total_bytes() as usize];
decoder.read_image(&mut buf).expect("failed to decode");
buf
}
#[test]
fn round_trip_single_pixel_rgb() {
let image = [255u8, 0, 0];
let decoded = round_trip_image(&image, 1, 1, ColorType::Rgb8);
assert_eq!(3, decoded.len());
assert_eq!(255, decoded[0]);
assert_eq!(0, decoded[1]);
assert_eq!(0, decoded[2]);
}
#[test]
fn huge_files_return_error() {
let mut encoded_data = Vec::new();
let image = vec![0u8; 3 * 40_000 * 40_000];
let mut encoder = BmpEncoder::new(&mut encoded_data);
let result = encoder.encode(&image, 40_000, 40_000, ColorType::Rgb8);
assert!(result.is_err());
}
#[test]
fn round_trip_single_pixel_rgba() {
let image = [1, 2, 3, 4];
let decoded = round_trip_image(&image, 1, 1, ColorType::Rgba8);
assert_eq!(&decoded[..], &image[..]);
}
#[test]
fn round_trip_3px_rgb() {
let image = [0u8; 3 * 3 * 3];
let _decoded = round_trip_image(&image, 3, 3, ColorType::Rgb8);
}
#[test]
fn round_trip_gray() {
let image = [0u8, 1, 2];
let decoded = round_trip_image(&image, 3, 1, ColorType::L8);
assert_eq!(9, decoded.len());
assert_eq!(0, decoded[0]);
assert_eq!(0, decoded[1]);
assert_eq!(0, decoded[2]);
assert_eq!(1, decoded[3]);
assert_eq!(1, decoded[4]);
assert_eq!(1, decoded[5]);
assert_eq!(2, decoded[6]);
assert_eq!(2, decoded[7]);
assert_eq!(2, decoded[8]);
}
#[test]
fn round_trip_graya() {
let image = [0u8, 0, 1, 0, 2, 0];
let decoded = round_trip_image(&image, 1, 3, ColorType::La8);
assert_eq!(9, decoded.len());
assert_eq!(0, decoded[0]);
assert_eq!(0, decoded[1]);
assert_eq!(0, decoded[2]);
assert_eq!(1, decoded[3]);
assert_eq!(1, decoded[4]);
assert_eq!(1, decoded[5]);
assert_eq!(2, decoded[6]);
assert_eq!(2, decoded[7]);
assert_eq!(2, decoded[8]);
}
}