Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
//! Image Processing Functions
use std::cmp;

use num_traits::{NumCast};

use crate::image::{GenericImage, GenericImageView, SubImage};
use crate::traits::{Lerp, Primitive, Pixel};

pub use self::sample::FilterType;

pub use self::sample::FilterType::{CatmullRom, Gaussian, Lanczos3, Nearest, Triangle};

/// Affine transformations
pub use self::affine::{
    flip_horizontal, flip_horizontal_in_place, flip_vertical, flip_vertical_in_place, rotate180,
    rotate180_in_place, rotate270, rotate90, rotate180_in, rotate90_in, rotate270_in, flip_horizontal_in, flip_vertical_in
};

/// Image sampling
pub use self::sample::{blur, filter3x3, resize, thumbnail, unsharpen};

/// Color operations
pub use self::colorops::{brighten, contrast, dither, grayscale, huerotate, index_colors, invert,
                         BiLevel, ColorMap};

mod affine;
// Public only because of Rust bug:
// https://github.com/rust-lang/rust/issues/18241
pub mod colorops;
mod sample;

/// Return a mutable view into an image
pub fn crop<I: GenericImageView>(
    image: &mut I,
    x: u32,
    y: u32,
    width: u32,
    height: u32,
) -> SubImage<&mut I> {
    let (x, y, width, height) = crop_dimms(image, x, y, width, height);
    SubImage::new(image, x, y, width, height)
}

/// Return an immutable view into an image
pub fn crop_imm<I: GenericImageView>(
    image: &I,
    x: u32,
    y: u32,
    width: u32,
    height: u32,
) -> SubImage<&I> {
    let (x, y, width, height) = crop_dimms(image, x, y, width, height);
    SubImage::new(image, x, y, width, height)
}

fn crop_dimms<I: GenericImageView>(
    image: &I,
    x: u32,
    y: u32,
    width: u32,
    height: u32,
) -> (u32, u32, u32, u32) {
    let (iwidth, iheight) = image.dimensions();

    let x = cmp::min(x, iwidth);
    let y = cmp::min(y, iheight);

    let height = cmp::min(height, iheight - y);
    let width = cmp::min(width, iwidth - x);

    (x, y, width, height)
}

/// Calculate the region that can be copied from top to bottom.
///
/// Given image size of bottom and top image, and a point at which we want to place the top image
/// onto the bottom image, how large can we be? Have to wary of the following issues:
/// * Top might be larger than bottom
/// * Overflows in the computation
/// * Coordinates could be completely out of bounds
///
/// The main idea is to make use of inequalities provided by the nature of `saturing_add` and
/// `saturating_sub`. These intrinsically validate that all resulting coordinates will be in bounds
/// for both images.
///
/// We want that all these coordinate accesses are safe:
/// 1. `bottom.get_pixel(x + [0..x_range), y + [0..y_range))`
/// 2. `top.get_pixel([0..x_range), [0..y_range))`
///
/// Proof that the function provides the necessary bounds for width. Note that all unaugmented math
/// operations are to be read in standard arithmetic, not integer arithmetic. Since no direct
/// integer arithmetic occurs in the implementation, this is unambiguous.
///
/// ```text
/// Three short notes/lemmata:
/// - Iff `(a - b) <= 0` then `a.saturating_sub(b) = 0`
/// - Iff `(a - b) >= 0` then `a.saturating_sub(b) = a - b`
/// - If  `a <= c` then `a.saturating_sub(b) <= c.saturating_sub(b)`
///
/// 1.1 We show that if `bottom_width <= x`, then `x_range = 0` therefore `x + [0..x_range)` is empty.
///
/// x_range
///  = (top_width.saturating_add(x).min(bottom_width)).saturating_sub(x)
/// <= bottom_width.saturating_sub(x)
///
/// bottom_width <= x
/// <==> bottom_width - x <= 0
/// <==> bottom_width.saturating_sub(x) = 0
///  ==> x_range <= 0
///  ==> x_range  = 0
///
/// 1.2 If `x < bottom_width` then `x + x_range < bottom_width`
///
/// x + x_range
/// <= x + bottom_width.saturating_sub(x)
///  = x + (bottom_width - x)
///  = bottom_width
///
/// 2. We show that `x_range <= top_width`
///
/// x_range
///  = (top_width.saturating_add(x).min(bottom_width)).saturating_sub(x)
/// <= top_width.saturating_add(x).saturating_sub(x)
/// <= (top_wdith + x).saturating_sub(x)
///  = top_width (due to `top_width >= 0` and `x >= 0`)
/// ```
///
/// Proof is the same for height.
pub fn overlay_bounds(
    (bottom_width, bottom_height): (u32, u32),
    (top_width, top_height): (u32, u32),
    x: u32,
    y: u32
)
    -> (u32, u32)
{
    let x_range = top_width.saturating_add(x) // Calculate max coordinate
        .min(bottom_width) // Restrict to lower width
        .saturating_sub(x); // Determinate length from start `x`
    let y_range = top_height.saturating_add(y)
        .min(bottom_height)
        .saturating_sub(y);
    (x_range, y_range)
}

/// Overlay an image at a given coordinate (x, y)
pub fn overlay<I, J>(bottom: &mut I, top: &J, x: u32, y: u32)
where
    I: GenericImage,
    J: GenericImageView<Pixel = I::Pixel>,
{
    let bottom_dims = bottom.dimensions();
    let top_dims = top.dimensions();

    // Crop our top image if we're going out of bounds
    let (range_width, range_height) = overlay_bounds(bottom_dims, top_dims, x, y);

    for top_y in 0..range_height {
        for top_x in 0..range_width {
            let p = top.get_pixel(top_x, top_y);
            let mut bottom_pixel = bottom.get_pixel(x + top_x, y + top_y);
            bottom_pixel.blend(&p);

            bottom.put_pixel(x + top_x, y + top_y, bottom_pixel);
        }
    }
}

/// Tile an image by repeating it multiple times
///
/// # Examples
/// ```no_run
/// use image::{RgbaImage};
///
/// fn main() {
///      let mut img = RgbaImage::new(1920, 1080);
///      let tile = image::open("tile.png").unwrap();
///
///      image::imageops::tile(&mut img, &tile);
///      img.save("tiled_wallpaper.png").unwrap();
/// }
/// ```
pub fn tile<I, J>(bottom: &mut I, top: &J)
where
    I: GenericImage,
    J: GenericImageView<Pixel = I::Pixel>,
{
    for x in (0..bottom.width()).step_by(top.width() as usize) {
        for y in (0..bottom.height()).step_by(top.height() as usize) {
            overlay(bottom, top, x, y);
        }
    }
}

/// Fill the image with a linear vertical gradient
/// 
/// This function assumes a linear color space.
/// 
/// # Examples
/// ```no_run
/// use image::{Rgba, RgbaImage, Pixel};
/// 
/// fn main() {
///     let mut img = RgbaImage::new(100, 100);
///     let start = Rgba::from_slice(&[0, 128, 0, 0]);
///     let end = Rgba::from_slice(&[255, 255, 255, 255]);
/// 
///     image::imageops::vertical_gradient(&mut img, start, end);
///     img.save("vertical_gradient.png").unwrap();
/// }
pub fn vertical_gradient<S, P, I>(img: &mut I, start: &P, stop: &P)
where
    I: GenericImage<Pixel = P>,
    P: Pixel<Subpixel = S> + 'static,
    S: Primitive + Lerp + 'static
{
    for y in 0..img.height() {
        let pixel = start.map2(stop, |a, b| {
            let y = <S::Ratio as NumCast>::from(y).unwrap();
            let height = <S::Ratio as NumCast>::from(img.height() - 1).unwrap();
            S::lerp(a, b, y / height)
        });
        
        for x in 0..img.width() {
            img.put_pixel(x, y, pixel);
        }
    }
}

/// Fill the image with a linear horizontal gradient
/// 
/// This function assumes a linear color space.
///
/// # Examples
/// ```no_run
/// use image::{Rgba, RgbaImage, Pixel};
/// 
/// fn main() {
///     let mut img = RgbaImage::new(100, 100);
///     let start = Rgba::from_slice(&[0, 128, 0, 0]);
///     let end = Rgba::from_slice(&[255, 255, 255, 255]);
/// 
///     image::imageops::horizontal_gradient(&mut img, start, end);
///     img.save("horizontal_gradient.png").unwrap();
/// }
pub fn horizontal_gradient<S, P, I>(img: &mut I, start: &P, stop: &P)
where
    I: GenericImage<Pixel = P>,
    P: Pixel<Subpixel = S> + 'static,
    S: Primitive + Lerp + 'static
{
    for x in 0..img.width() {
        let pixel = start.map2(stop, |a, b| {
            let x = <S::Ratio as NumCast>::from(x).unwrap();
            let width = <S::Ratio as NumCast>::from(img.width() - 1).unwrap();
            S::lerp(a, b, x / width)
        });
        
        for y in 0..img.height() {
            img.put_pixel(x, y, pixel);
        }
    }
}

/// Replace the contents of an image at a given coordinate (x, y)
pub fn replace<I, J>(bottom: &mut I, top: &J, x: u32, y: u32)
where
    I: GenericImage,
    J: GenericImageView<Pixel = I::Pixel>,
{
    let bottom_dims = bottom.dimensions();
    let top_dims = top.dimensions();

    // Crop our top image if we're going out of bounds
    let (range_width, range_height) = overlay_bounds(bottom_dims, top_dims, x, y);

    for top_y in 0..range_height {
        for top_x in 0..range_width {
            let p = top.get_pixel(top_x, top_y);
            bottom.put_pixel(x + top_x, y + top_y, p);
        }
    }
}

#[cfg(test)]
mod tests {

    use super::overlay;
    use crate::RgbaImage;
    use crate::ImageBuffer;
    use crate::color::Rgb;

    #[test]
    /// Test that images written into other images works
    fn test_image_in_image() {
        let mut target = ImageBuffer::new(32, 32);
        let source = ImageBuffer::from_pixel(16, 16, Rgb([255u8, 0, 0]));
        overlay(&mut target, &source, 0, 0);
        assert!(*target.get_pixel(0, 0) == Rgb([255u8, 0, 0]));
        assert!(*target.get_pixel(15, 0) == Rgb([255u8, 0, 0]));
        assert!(*target.get_pixel(16, 0) == Rgb([0u8, 0, 0]));
        assert!(*target.get_pixel(0, 15) == Rgb([255u8, 0, 0]));
        assert!(*target.get_pixel(0, 16) == Rgb([0u8, 0, 0]));
    }

    #[test]
    /// Test that images written outside of a frame doesn't blow up
    fn test_image_in_image_outside_of_bounds() {
        let mut target = ImageBuffer::new(32, 32);
        let source = ImageBuffer::from_pixel(32, 32, Rgb([255u8, 0, 0]));
        overlay(&mut target, &source, 1, 1);
        assert!(*target.get_pixel(0, 0) == Rgb([0, 0, 0]));
        assert!(*target.get_pixel(1, 1) == Rgb([255u8, 0, 0]));
        assert!(*target.get_pixel(31, 31) == Rgb([255u8, 0, 0]));
    }

    #[test]
    /// Test that images written to coordinates out of the frame doesn't blow up
    /// (issue came up in #848)
    fn test_image_outside_image_no_wrap_around() {
        let mut target = ImageBuffer::new(32, 32);
        let source = ImageBuffer::from_pixel(32, 32, Rgb([255u8, 0, 0]));
        overlay(&mut target, &source, 33, 33);
        assert!(*target.get_pixel(0, 0) == Rgb([0, 0, 0]));
        assert!(*target.get_pixel(1, 1) == Rgb([0, 0, 0]));
        assert!(*target.get_pixel(31, 31) == Rgb([0, 0, 0]));
    }

    #[test]
    /// Test that images written to coordinates with overflow works
    fn test_image_coordinate_overflow() {
        let mut target = ImageBuffer::new(16, 16);
        let source = ImageBuffer::from_pixel(32, 32, Rgb([255u8, 0, 0]));
        // Overflows to 'sane' coordinates but top is larger than bot.
        overlay(&mut target, &source, u32::max_value() - 31, u32::max_value() - 31);
        assert!(*target.get_pixel(0, 0) == Rgb([0, 0, 0]));
        assert!(*target.get_pixel(1, 1) == Rgb([0, 0, 0]));
        assert!(*target.get_pixel(15, 15) == Rgb([0, 0, 0]));
    }

    use super::{horizontal_gradient, vertical_gradient};

    #[test]
    /// Test that horizontal gradients are correctly generated
    fn test_image_horizontal_gradient_limits() {
        let mut img = ImageBuffer::new(100, 1);

        let start = Rgb([0u8, 128, 0]);
        let end = Rgb([255u8, 255, 255]);

        horizontal_gradient(&mut img, &start, &end);

        assert_eq!(img.get_pixel(0, 0), &start);
        assert_eq!(img.get_pixel(img.width() - 1, 0), &end);
    }

    #[test]
    /// Test that vertical gradients are correctly generated
    fn test_image_vertical_gradient_limits() {
        let mut img = ImageBuffer::new(1, 100);

        let start = Rgb([0u8, 128, 0]);
        let end = Rgb([255u8, 255, 255]);

        vertical_gradient(&mut img, &start, &end);

        assert_eq!(img.get_pixel(0, 0), &start);
        assert_eq!(img.get_pixel(0, img.height() - 1), &end);
    }

    #[test]
    /// Test blur doens't panick when passed 0.0
    fn test_blur_zero() {
        let image = RgbaImage::new(50, 50);
        let _ = super::blur(&image, 0.0);
    }
}