Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
//! This module provides useful traits that were deprecated in rust

// Note copied from the stdlib under MIT license

use num_traits::{Bounded, Num, NumCast};
use std::ops::{AddAssign};

use crate::color::{ColorType, Luma, LumaA, Rgb, Rgba, Bgr, Bgra};

/// Types which are safe to treat as an immutable byte slice in a pixel layout
/// for image encoding.
pub trait EncodableLayout: seals::EncodableLayout {
    /// Get the bytes of this value.
    fn as_bytes(&self) -> &[u8];
}

impl EncodableLayout for [u8] {
    fn as_bytes(&self) -> &[u8] {
        bytemuck::cast_slice(self)
    }
}

impl EncodableLayout for [u16] {
    fn as_bytes(&self) -> &[u8] {
        bytemuck::cast_slice(self)
    }
}

/// Primitive trait from old stdlib
pub trait Primitive: Copy + NumCast + Num + PartialOrd<Self> + Clone + Bounded {}

impl Primitive for usize {}
impl Primitive for u8 {}
impl Primitive for u16 {}
impl Primitive for u32 {}
impl Primitive for u64 {}
impl Primitive for isize {}
impl Primitive for i8 {}
impl Primitive for i16 {}
impl Primitive for i32 {}
impl Primitive for i64 {}
impl Primitive for f32 {}
impl Primitive for f64 {}

/// An Enlargable::Larger value should be enough to calculate
/// the sum (average) of a few hundred or thousand Enlargeable values.
pub trait Enlargeable: Sized + Bounded + NumCast {
    type Larger: Primitive + AddAssign + 'static;

    fn clamp_from(n: Self::Larger) -> Self {
        // Note: Only unsigned value types supported.
        if n > NumCast::from(Self::max_value()).unwrap() {
            Self::max_value()
        } else {
            NumCast::from(n).unwrap()
        }
    }
}

impl Enlargeable for u8 {
    type Larger = u32;
}
impl Enlargeable for u16 {
    type Larger = u32;
}
impl Enlargeable for u32 {
    type Larger = u64;
}

/// Linear interpolation without involving floating numbers.
pub trait Lerp: Bounded + NumCast {
    type Ratio: Primitive;

    fn lerp(a: Self, b: Self, ratio: Self::Ratio) -> Self {
        let a = <Self::Ratio as NumCast>::from(a).unwrap();
        let b = <Self::Ratio as NumCast>::from(b).unwrap();

        let res = a + (b - a) * ratio;

        if res > NumCast::from(Self::max_value()).unwrap() {
            Self::max_value()
        } else if res < NumCast::from(0).unwrap() {
            NumCast::from(0).unwrap()
        } else {
            NumCast::from(res).unwrap()
        }
    }
}

impl Lerp for u8 {
    type Ratio = f32;
}

impl Lerp for u16 {
    type Ratio = f32;
}

impl Lerp for u32 {
    type Ratio = f64;
}

/// A generalized pixel.
///
/// A pixel object is usually not used standalone but as a view into an image buffer.
pub trait Pixel: Copy + Clone {
    /// The underlying subpixel type.
    type Subpixel: Primitive;

    /// The number of channels of this pixel type.
    const CHANNEL_COUNT: u8;
    /// Returns the number of channels of this pixel type.
    #[deprecated(note="please use CHANNEL_COUNT associated constant")]
    fn channel_count() -> u8 {
        Self::CHANNEL_COUNT
    }

    /// Returns the components as a slice.
    fn channels(&self) -> &[Self::Subpixel];

    /// Returns the components as a mutable slice
    fn channels_mut(&mut self) -> &mut [Self::Subpixel];

    /// A string that can help to interpret the meaning each channel
    /// See [gimp babl](http://gegl.org/babl/).
    const COLOR_MODEL: &'static str;
    /// Returns a string that can help to interpret the meaning each channel
    /// See [gimp babl](http://gegl.org/babl/).
    #[deprecated(note="please use COLOR_MODEL associated constant")]
    fn color_model() -> &'static str {
        Self::COLOR_MODEL
    }

    /// ColorType for this pixel format
    const COLOR_TYPE: ColorType;
    /// Returns the ColorType for this pixel format
    #[deprecated(note="please use COLOR_TYPE associated constant")]
    fn color_type() -> ColorType {
        Self::COLOR_TYPE
    }

    /// Returns the channels of this pixel as a 4 tuple. If the pixel
    /// has less than 4 channels the remainder is filled with the maximum value
    ///
    /// TODO deprecate
    fn channels4(
        &self,
    ) -> (
        Self::Subpixel,
        Self::Subpixel,
        Self::Subpixel,
        Self::Subpixel,
    );

    /// Construct a pixel from the 4 channels a, b, c and d.
    /// If the pixel does not contain 4 channels the extra are ignored.
    ///
    /// TODO deprecate
    fn from_channels(
        a: Self::Subpixel,
        b: Self::Subpixel,
        c: Self::Subpixel,
        d: Self::Subpixel,
    ) -> Self;

    /// Returns a view into a slice.
    ///
    /// Note: The slice length is not checked on creation. Thus the caller has to ensure
    /// that the slice is long enough to prevent panics if the pixel is used later on.
    fn from_slice(slice: &[Self::Subpixel]) -> &Self;

    /// Returns mutable view into a mutable slice.
    ///
    /// Note: The slice length is not checked on creation. Thus the caller has to ensure
    /// that the slice is long enough to prevent panics if the pixel is used later on.
    fn from_slice_mut(slice: &mut [Self::Subpixel]) -> &mut Self;

    /// Convert this pixel to RGB
    fn to_rgb(&self) -> Rgb<Self::Subpixel>;

    /// Convert this pixel to RGB with an alpha channel
    fn to_rgba(&self) -> Rgba<Self::Subpixel>;

    /// Convert this pixel to luma
    fn to_luma(&self) -> Luma<Self::Subpixel>;

    /// Convert this pixel to luma with an alpha channel
    fn to_luma_alpha(&self) -> LumaA<Self::Subpixel>;

    /// Convert this pixel to BGR
    fn to_bgr(&self) -> Bgr<Self::Subpixel>;

    /// Convert this pixel to BGR with an alpha channel
    fn to_bgra(&self) -> Bgra<Self::Subpixel>;

    /// Apply the function ```f``` to each channel of this pixel.
    fn map<F>(&self, f: F) -> Self
    where
        F: FnMut(Self::Subpixel) -> Self::Subpixel;

    /// Apply the function ```f``` to each channel of this pixel.
    fn apply<F>(&mut self, f: F)
    where
        F: FnMut(Self::Subpixel) -> Self::Subpixel;

    /// Apply the function ```f``` to each channel except the alpha channel.
    /// Apply the function ```g``` to the alpha channel.
    fn map_with_alpha<F, G>(&self, f: F, g: G) -> Self
    where
        F: FnMut(Self::Subpixel) -> Self::Subpixel,
        G: FnMut(Self::Subpixel) -> Self::Subpixel;

    /// Apply the function ```f``` to each channel except the alpha channel.
    /// Apply the function ```g``` to the alpha channel. Works in-place.
    fn apply_with_alpha<F, G>(&mut self, f: F, g: G)
    where
        F: FnMut(Self::Subpixel) -> Self::Subpixel,
        G: FnMut(Self::Subpixel) -> Self::Subpixel;

    /// Apply the function ```f``` to each channel except the alpha channel.
    fn map_without_alpha<F>(&self, f: F) -> Self
    where
        F: FnMut(Self::Subpixel) -> Self::Subpixel,
    {
        let mut this = *self;
        this.apply_with_alpha(f, |x| x);
        this
    }

    /// Apply the function ```f``` to each channel except the alpha channel.
    /// Works in place.
    fn apply_without_alpha<F>(&mut self, f: F)
    where
        F: FnMut(Self::Subpixel) -> Self::Subpixel,
    {
        self.apply_with_alpha(f, |x| x);
    }

    /// Apply the function ```f``` to each channel of this pixel and
    /// ```other``` pairwise.
    fn map2<F>(&self, other: &Self, f: F) -> Self
    where
        F: FnMut(Self::Subpixel, Self::Subpixel) -> Self::Subpixel;

    /// Apply the function ```f``` to each channel of this pixel and
    /// ```other``` pairwise. Works in-place.
    fn apply2<F>(&mut self, other: &Self, f: F)
    where
        F: FnMut(Self::Subpixel, Self::Subpixel) -> Self::Subpixel;

    /// Invert this pixel
    fn invert(&mut self);

    /// Blend the color of a given pixel into ourself, taking into account alpha channels
    fn blend(&mut self, other: &Self);
}

/// Private module for supertraits of sealed traits.
mod seals {
    pub trait EncodableLayout {}

    impl EncodableLayout for [u8] {}
    impl EncodableLayout for [u16] {}
}