Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
use crate::ffi;
use crate::{DecodePosition, VertexDataAdapter, VertexStream};

/// Generate index buffer that can be used for more efficient rendering when only a subset of the vertex
/// attributes is necessary. All vertices that are binary equivalent (wrt first vertex_size bytes) map to
/// the first vertex in the original vertex buffer.
///
/// This makes it possible to use the index buffer for Z pre-pass or shadowmap rendering, while using
/// the original index buffer for regular rendering.
pub fn generate_shadow_indices(indices: &[u32], vertices: &VertexDataAdapter) -> Vec<u32> {
    let vertex_data = vertices.reader.get_ref();
    let vertex_data = vertex_data.as_ptr() as *const u8;
    let positions = unsafe { vertex_data.add(vertices.position_offset) };
    let mut shadow_indices: Vec<u32> = vec![0; indices.len()];
    unsafe {
        ffi::meshopt_generateShadowIndexBuffer(
            shadow_indices.as_mut_ptr(),
            indices.as_ptr(),
            indices.len(),
            positions as *const ::std::os::raw::c_void,
            vertices.vertex_count,
            ::std::mem::size_of::<f32>() * 3,
            vertices.vertex_stride,
        );
    }
    shadow_indices
}

/// Generate index buffer that can be used for more efficient rendering when only a subset of the vertex
/// attributes is necessary. All vertices that are binary equivalent (wrt first vertex_size bytes) map to
/// the first vertex in the original vertex buffer.
///
/// This makes it possible to use the index buffer for Z pre-pass or shadowmap rendering, while using
/// the original index buffer for regular rendering.
pub fn generate_shadow_indices_decoder<T: DecodePosition>(
    indices: &[u32],
    vertices: &[T],
) -> Vec<u32> {
    let vertices = vertices
        .iter()
        .map(|vertex| vertex.decode_position())
        .collect::<Vec<[f32; 3]>>();
    let positions = vertices.as_ptr() as *const ::std::ffi::c_void;
    let mut shadow_indices: Vec<u32> = vec![0; indices.len()];
    unsafe {
        ffi::meshopt_generateShadowIndexBuffer(
            shadow_indices.as_mut_ptr(),
            indices.as_ptr(),
            indices.len(),
            positions,
            vertices.len() * 3,
            ::std::mem::size_of::<f32>() * 3,
            ::std::mem::size_of::<f32>() * 3,
        );
    }
    shadow_indices
}

/// Generate index buffer that can be used for more efficient rendering when only a subset of the vertex
/// attributes is necessary. All vertices that are binary equivalent (wrt specified streams) map to the
/// first vertex in the original vertex buffer.
///
/// This makes it possible to use the index buffer for Z pre-pass or shadowmap rendering, while using
/// the original index buffer for regular rendering.
pub fn generate_shadow_indices_multi(
    indices: &[u32],
    vertex_count: usize,
    streams: &[VertexStream],
) -> Vec<u32> {
    let streams: Vec<ffi::meshopt_Stream> = streams
        .iter()
        .map(|stream| ffi::meshopt_Stream {
            data: stream.data as *const ::std::ffi::c_void,
            size: stream.size,
            stride: stream.stride,
        })
        .collect();
    let mut shadow_indices: Vec<u32> = vec![0; indices.len()];
    unsafe {
        ffi::meshopt_generateShadowIndexBufferMulti(
            shadow_indices.as_mut_ptr(),
            indices.as_ptr(),
            indices.len(),
            vertex_count,
            streams.as_ptr(),
            streams.len(),
        );
    }
    shadow_indices
}