Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
//! Compatibility constraints between matrix shapes, e.g., for addition or multiplication.

use crate::base::dimension::{Dim, DimName, Dynamic};

/// A type used in `where` clauses for enforcing constraints.
pub struct ShapeConstraint;

/// Constraints `C1` and `R2` to be equivalent.
pub trait AreMultipliable<R1: Dim, C1: Dim, R2: Dim, C2: Dim>: DimEq<C1, R2> {}

impl<R1: Dim, C1: Dim, R2: Dim, C2: Dim> AreMultipliable<R1, C1, R2, C2> for ShapeConstraint where
    ShapeConstraint: DimEq<C1, R2>
{
}

/// Constraints `D1` and `D2` to be equivalent.
pub trait DimEq<D1: Dim, D2: Dim> {
    /// This is either equal to `D1` or `D2`, always choosing the one (if any) which is a type-level
    /// constant.
    type Representative: Dim;
}

impl<D: Dim> DimEq<D, D> for ShapeConstraint {
    type Representative = D;
}

impl<D: DimName> DimEq<D, Dynamic> for ShapeConstraint {
    type Representative = D;
}

impl<D: DimName> DimEq<Dynamic, D> for ShapeConstraint {
    type Representative = D;
}

macro_rules! equality_trait_decl(
    ($($doc: expr, $Trait: ident),* $(,)*) => {$(
        // XXX: we can't do something like `DimEq<D1> for D2` because we would require a blancket impl…
        #[doc = $doc]
        pub trait $Trait<D1: Dim, D2: Dim>: DimEq<D1, D2> + DimEq<D2, D1> {
            /// This is either equal to `D1` or `D2`, always choosing the one (if any) which is a type-level
            /// constant.
            type Representative: Dim;
        }

        impl<D: Dim> $Trait<D, D> for ShapeConstraint {
            type Representative = D;
        }

        impl<D: DimName> $Trait<D, Dynamic> for ShapeConstraint {
            type Representative = D;
        }

        impl<D: DimName> $Trait<Dynamic, D> for ShapeConstraint {
            type Representative = D;
        }
    )*}
);

equality_trait_decl!(
    "Constraints `D1` and `D2` to be equivalent. \
     They are both assumed to be the number of \
     rows of a matrix.",
    SameNumberOfRows,
    "Constraints `D1` and `D2` to be equivalent. \
     They are both assumed to be the number of \
     columns of a matrix.",
    SameNumberOfColumns
);

/// Constraints D1 and D2 to be equivalent, where they both designate dimensions of algebraic
/// entities (e.g. square matrices).
pub trait SameDimension<D1: Dim, D2: Dim>:
    SameNumberOfRows<D1, D2> + SameNumberOfColumns<D1, D2>
{
    /// This is either equal to `D1` or `D2`, always choosing the one (if any) which is a type-level
    /// constant.
    type Representative: Dim;
}

impl<D: Dim> SameDimension<D, D> for ShapeConstraint {
    type Representative = D;
}

impl<D: DimName> SameDimension<D, Dynamic> for ShapeConstraint {
    type Representative = D;
}

impl<D: DimName> SameDimension<Dynamic, D> for ShapeConstraint {
    type Representative = D;
}