1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use num::{One, Zero};
use std::fmt;
use std::hash;
#[cfg(feature = "abomonation-serialize")]
use std::io::{Result as IOResult, Write};

#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};

#[cfg(feature = "serde-serialize")]
use crate::base::storage::Owned;

#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;

use simba::scalar::RealField;
use simba::simd::SimdRealField;

use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
use crate::base::{DefaultAllocator, MatrixN, Scalar, Unit, VectorN};
use crate::geometry::Point;

/// A rotation matrix.
///
/// This is also known as an element of a Special Orthogonal (SO) group.
/// The `Rotation` type can either represent a 2D or 3D rotation, represented as a matrix.
/// For a rotation based on quaternions, see [`UnitQuaternion`](crate::UnitQuaternion) instead.
///
/// Note that instead of using the [`Rotation`](crate::Rotation) type in your code directly, you should use one
/// of its aliases: [`Rotation2`](crate::Rotation2), or [`Rotation3`](crate::Rotation3). Though
/// keep in mind that all the documentation of all the methods of these aliases will also appears on
/// this page.
///
/// # Construction
/// * [Identity <span style="float:right;">`identity`</span>](#identity)
/// * [From a 2D rotation angle <span style="float:right;">`new`…</span>](#construction-from-a-2d-rotation-angle)
/// * [From an existing 2D matrix or rotations <span style="float:right;">`from_matrix`, `rotation_between`, `powf`…</span>](#construction-from-an-existing-2d-matrix-or-rotations)
/// * [From a 3D axis and/or angles <span style="float:right;">`new`, `from_euler_angles`, `from_axis_angle`…</span>](#construction-from-a-3d-axis-andor-angles)
/// * [From a 3D eye position and target point <span style="float:right;">`look_at`, `look_at_lh`, `rotation_between`…</span>](#construction-from-a-3d-eye-position-and-target-point)
/// * [From an existing 3D matrix or rotations <span style="float:right;">`from_matrix`, `rotation_between`, `powf`…</span>](#construction-from-an-existing-3d-matrix-or-rotations)
///
/// # Transformation and composition
/// Note that transforming vectors and points can be done by multiplication, e.g., `rotation * point`.
/// Composing an rotation with another transformation can also be done by multiplication or division.
/// * [3D axis and angle extraction <span style="float:right;">`angle`, `euler_angles`, `scaled_axis`, `angle_to`…</span>](#3d-axis-and-angle-extraction)
/// * [2D angle extraction <span style="float:right;">`angle`, `angle_to`…</span>](#2d-angle-extraction)
/// * [Transformation of a vector or a point <span style="float:right;">`transform_vector`, `inverse_transform_point`…</span>](#transformation-of-a-vector-or-a-point)
/// * [Transposition and inversion <span style="float:right;">`transpose`, `inverse`…</span>](#transposition-and-inversion)
/// * [Interpolation <span style="float:right;">`slerp`…</span>](#interpolation)
///
/// # Conversion
/// * [Conversion to a matrix <span style="float:right;">`matrix`, `to_homogeneous`…</span>](#conversion-to-a-matrix)
///
#[repr(C)]
#[derive(Debug)]
pub struct Rotation<N: Scalar, D: DimName>
where
    DefaultAllocator: Allocator<N, D, D>,
{
    matrix: MatrixN<N, D>,
}

impl<N: Scalar + hash::Hash, D: DimName + hash::Hash> hash::Hash for Rotation<N, D>
where
    DefaultAllocator: Allocator<N, D, D>,
    <DefaultAllocator as Allocator<N, D, D>>::Buffer: hash::Hash,
{
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        self.matrix.hash(state)
    }
}

impl<N: Scalar + Copy, D: DimName> Copy for Rotation<N, D>
where
    DefaultAllocator: Allocator<N, D, D>,
    <DefaultAllocator as Allocator<N, D, D>>::Buffer: Copy,
{
}

impl<N: Scalar, D: DimName> Clone for Rotation<N, D>
where
    DefaultAllocator: Allocator<N, D, D>,
    <DefaultAllocator as Allocator<N, D, D>>::Buffer: Clone,
{
    #[inline]
    fn clone(&self) -> Self {
        Self::from_matrix_unchecked(self.matrix.clone())
    }
}

#[cfg(feature = "abomonation-serialize")]
impl<N, D> Abomonation for Rotation<N, D>
where
    N: Scalar,
    D: DimName,
    MatrixN<N, D>: Abomonation,
    DefaultAllocator: Allocator<N, D, D>,
{
    unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> {
        self.matrix.entomb(writer)
    }

    fn extent(&self) -> usize {
        self.matrix.extent()
    }

    unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
        self.matrix.exhume(bytes)
    }
}

#[cfg(feature = "serde-serialize")]
impl<N: Scalar, D: DimName> Serialize for Rotation<N, D>
where
    DefaultAllocator: Allocator<N, D, D>,
    Owned<N, D, D>: Serialize,
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        self.matrix.serialize(serializer)
    }
}

#[cfg(feature = "serde-serialize")]
impl<'a, N: Scalar, D: DimName> Deserialize<'a> for Rotation<N, D>
where
    DefaultAllocator: Allocator<N, D, D>,
    Owned<N, D, D>: Deserialize<'a>,
{
    fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
    where
        Des: Deserializer<'a>,
    {
        let matrix = MatrixN::<N, D>::deserialize(deserializer)?;

        Ok(Self::from_matrix_unchecked(matrix))
    }
}

impl<N: Scalar, D: DimName> Rotation<N, D>
where
    DefaultAllocator: Allocator<N, D, D>,
{
    /// Creates a new rotation from the given square matrix.
    ///
    /// The matrix squareness is checked but not its orthonormality.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{Rotation2, Rotation3, Matrix2, Matrix3};
    /// # use std::f32;
    /// let mat = Matrix3::new(0.8660254, -0.5,      0.0,
    ///                        0.5,       0.8660254, 0.0,
    ///                        0.0,       0.0,       1.0);
    /// let rot = Rotation3::from_matrix_unchecked(mat);
    ///
    /// assert_eq!(*rot.matrix(), mat);
    ///
    ///
    /// let mat = Matrix2::new(0.8660254, -0.5,
    ///                        0.5,       0.8660254);
    /// let rot = Rotation2::from_matrix_unchecked(mat);
    ///
    /// assert_eq!(*rot.matrix(), mat);
    /// ```
    #[inline]
    pub fn from_matrix_unchecked(matrix: MatrixN<N, D>) -> Self {
        assert!(
            matrix.is_square(),
            "Unable to create a rotation from a non-square matrix."
        );

        Self { matrix }
    }
}

/// # Conversion to a matrix
impl<N: Scalar, D: DimName> Rotation<N, D>
where
    DefaultAllocator: Allocator<N, D, D>,
{
    /// A reference to the underlying matrix representation of this rotation.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{Rotation2, Rotation3, Vector3, Matrix2, Matrix3};
    /// # use std::f32;
    /// let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
    /// let expected = Matrix3::new(0.8660254, -0.5,      0.0,
    ///                             0.5,       0.8660254, 0.0,
    ///                             0.0,       0.0,       1.0);
    /// assert_eq!(*rot.matrix(), expected);
    ///
    ///
    /// let rot = Rotation2::new(f32::consts::FRAC_PI_6);
    /// let expected = Matrix2::new(0.8660254, -0.5,
    ///                             0.5,       0.8660254);
    /// assert_eq!(*rot.matrix(), expected);
    /// ```
    #[inline]
    pub fn matrix(&self) -> &MatrixN<N, D> {
        &self.matrix
    }

    /// A mutable reference to the underlying matrix representation of this rotation.
    #[inline]
    #[deprecated(note = "Use `.matrix_mut_unchecked()` instead.")]
    pub unsafe fn matrix_mut(&mut self) -> &mut MatrixN<N, D> {
        &mut self.matrix
    }

    /// A mutable reference to the underlying matrix representation of this rotation.
    ///
    /// This is suffixed by "_unchecked" because this allows the user to replace the matrix by another one that is
    /// non-square, non-inversible, or non-orthonormal. If one of those properties is broken,
    /// subsequent method calls may be UB.
    #[inline]
    pub fn matrix_mut_unchecked(&mut self) -> &mut MatrixN<N, D> {
        &mut self.matrix
    }

    /// Unwraps the underlying matrix.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{Rotation2, Rotation3, Vector3, Matrix2, Matrix3};
    /// # use std::f32;
    /// let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
    /// let mat = rot.into_inner();
    /// let expected = Matrix3::new(0.8660254, -0.5,      0.0,
    ///                             0.5,       0.8660254, 0.0,
    ///                             0.0,       0.0,       1.0);
    /// assert_eq!(mat, expected);
    ///
    ///
    /// let rot = Rotation2::new(f32::consts::FRAC_PI_6);
    /// let mat = rot.into_inner();
    /// let expected = Matrix2::new(0.8660254, -0.5,
    ///                             0.5,       0.8660254);
    /// assert_eq!(mat, expected);
    /// ```
    #[inline]
    pub fn into_inner(self) -> MatrixN<N, D> {
        self.matrix
    }

    /// Unwraps the underlying matrix.
    /// Deprecated: Use [Rotation::into_inner] instead.
    #[deprecated(note = "use `.into_inner()` instead")]
    #[inline]
    pub fn unwrap(self) -> MatrixN<N, D> {
        self.matrix
    }

    /// Converts this rotation into its equivalent homogeneous transformation matrix.
    ///
    /// This is the same as `self.into()`.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{Rotation2, Rotation3, Vector3, Matrix3, Matrix4};
    /// # use std::f32;
    /// let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
    /// let expected = Matrix4::new(0.8660254, -0.5,      0.0, 0.0,
    ///                             0.5,       0.8660254, 0.0, 0.0,
    ///                             0.0,       0.0,       1.0, 0.0,
    ///                             0.0,       0.0,       0.0, 1.0);
    /// assert_eq!(rot.to_homogeneous(), expected);
    ///
    ///
    /// let rot = Rotation2::new(f32::consts::FRAC_PI_6);
    /// let expected = Matrix3::new(0.8660254, -0.5,      0.0,
    ///                             0.5,       0.8660254, 0.0,
    ///                             0.0,       0.0,       1.0);
    /// assert_eq!(rot.to_homogeneous(), expected);
    /// ```
    #[inline]
    pub fn to_homogeneous(&self) -> MatrixN<N, DimNameSum<D, U1>>
    where
        N: Zero + One,
        D: DimNameAdd<U1>,
        DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
    {
        // We could use `MatrixN::to_homogeneous()` here, but that would imply
        // adding the additional traits `DimAdd` and `IsNotStaticOne`. Maybe
        // these things will get nicer once specialization lands in Rust.
        let mut res = MatrixN::<N, DimNameSum<D, U1>>::identity();
        res.fixed_slice_mut::<D, D>(0, 0).copy_from(&self.matrix);

        res
    }
}

/// # Transposition and inversion
impl<N: Scalar, D: DimName> Rotation<N, D>
where
    DefaultAllocator: Allocator<N, D, D>,
{
    /// Transposes `self`.
    ///
    /// Same as `.inverse()` because the inverse of a rotation matrix is its transform.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{Rotation2, Rotation3, Vector3};
    /// let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
    /// let tr_rot = rot.transpose();
    /// assert_relative_eq!(rot * tr_rot, Rotation3::identity(), epsilon = 1.0e-6);
    /// assert_relative_eq!(tr_rot * rot, Rotation3::identity(), epsilon = 1.0e-6);
    ///
    /// let rot = Rotation2::new(1.2);
    /// let tr_rot = rot.transpose();
    /// assert_relative_eq!(rot * tr_rot, Rotation2::identity(), epsilon = 1.0e-6);
    /// assert_relative_eq!(tr_rot * rot, Rotation2::identity(), epsilon = 1.0e-6);
    /// ```
    #[inline]
    #[must_use = "Did you mean to use transpose_mut()?"]
    pub fn transpose(&self) -> Self {
        Self::from_matrix_unchecked(self.matrix.transpose())
    }

    /// Inverts `self`.
    ///
    /// Same as `.transpose()` because the inverse of a rotation matrix is its transform.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{Rotation2, Rotation3, Vector3};
    /// let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
    /// let inv = rot.inverse();
    /// assert_relative_eq!(rot * inv, Rotation3::identity(), epsilon = 1.0e-6);
    /// assert_relative_eq!(inv * rot, Rotation3::identity(), epsilon = 1.0e-6);
    ///
    /// let rot = Rotation2::new(1.2);
    /// let inv = rot.inverse();
    /// assert_relative_eq!(rot * inv, Rotation2::identity(), epsilon = 1.0e-6);
    /// assert_relative_eq!(inv * rot, Rotation2::identity(), epsilon = 1.0e-6);
    /// ```
    #[inline]
    #[must_use = "Did you mean to use inverse_mut()?"]
    pub fn inverse(&self) -> Self {
        self.transpose()
    }

    /// Transposes `self` in-place.
    ///
    /// Same as `.inverse_mut()` because the inverse of a rotation matrix is its transform.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{Rotation2, Rotation3, Vector3};
    /// let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
    /// let mut tr_rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
    /// tr_rot.transpose_mut();
    ///
    /// assert_relative_eq!(rot * tr_rot, Rotation3::identity(), epsilon = 1.0e-6);
    /// assert_relative_eq!(tr_rot * rot, Rotation3::identity(), epsilon = 1.0e-6);
    ///
    /// let rot = Rotation2::new(1.2);
    /// let mut tr_rot = Rotation2::new(1.2);
    /// tr_rot.transpose_mut();
    ///
    /// assert_relative_eq!(rot * tr_rot, Rotation2::identity(), epsilon = 1.0e-6);
    /// assert_relative_eq!(tr_rot * rot, Rotation2::identity(), epsilon = 1.0e-6);
    /// ```
    #[inline]
    pub fn transpose_mut(&mut self) {
        self.matrix.transpose_mut()
    }

    /// Inverts `self` in-place.
    ///
    /// Same as `.transpose_mut()` because the inverse of a rotation matrix is its transform.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{Rotation2, Rotation3, Vector3};
    /// let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
    /// let mut inv = Rotation3::new(Vector3::new(1.0, 2.0, 3.0));
    /// inv.inverse_mut();
    ///
    /// assert_relative_eq!(rot * inv, Rotation3::identity(), epsilon = 1.0e-6);
    /// assert_relative_eq!(inv * rot, Rotation3::identity(), epsilon = 1.0e-6);
    ///
    /// let rot = Rotation2::new(1.2);
    /// let mut inv = Rotation2::new(1.2);
    /// inv.inverse_mut();
    ///
    /// assert_relative_eq!(rot * inv, Rotation2::identity(), epsilon = 1.0e-6);
    /// assert_relative_eq!(inv * rot, Rotation2::identity(), epsilon = 1.0e-6);
    /// ```
    #[inline]
    pub fn inverse_mut(&mut self) {
        self.transpose_mut()
    }
}

/// # Transformation of a vector or a point
impl<N: SimdRealField, D: DimName> Rotation<N, D>
where
    N::Element: SimdRealField,
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
{
    /// Rotate the given point.
    ///
    /// This is the same as the multiplication `self * pt`.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{Point3, Rotation2, Rotation3, UnitQuaternion, Vector3};
    /// let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
    /// let transformed_point = rot.transform_point(&Point3::new(1.0, 2.0, 3.0));
    ///
    /// assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
    /// ```
    #[inline]
    pub fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
        self * pt
    }

    /// Rotate the given vector.
    ///
    /// This is the same as the multiplication `self * v`.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{Rotation2, Rotation3, UnitQuaternion, Vector3};
    /// let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
    /// let transformed_vector = rot.transform_vector(&Vector3::new(1.0, 2.0, 3.0));
    ///
    /// assert_relative_eq!(transformed_vector, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
    /// ```
    #[inline]
    pub fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
        self * v
    }

    /// Rotate the given point by the inverse of this rotation. This may be
    /// cheaper than inverting the rotation and then transforming the given
    /// point.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{Point3, Rotation2, Rotation3, UnitQuaternion, Vector3};
    /// let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
    /// let transformed_point = rot.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0));
    ///
    /// assert_relative_eq!(transformed_point, Point3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
    /// ```
    #[inline]
    pub fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
        Point::from(self.inverse_transform_vector(&pt.coords))
    }

    /// Rotate the given vector by the inverse of this rotation. This may be
    /// cheaper than inverting the rotation and then transforming the given
    /// vector.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{Rotation2, Rotation3, UnitQuaternion, Vector3};
    /// let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2);
    /// let transformed_vector = rot.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0));
    ///
    /// assert_relative_eq!(transformed_vector, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
    /// ```
    #[inline]
    pub fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
        self.matrix().tr_mul(v)
    }

    /// Rotate the given vector by the inverse of this rotation. This may be
    /// cheaper than inverting the rotation and then transforming the given
    /// vector.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{Rotation2, Rotation3, UnitQuaternion, Vector3};
    /// let rot = Rotation3::new(Vector3::z() * f32::consts::FRAC_PI_2);
    /// let transformed_vector = rot.inverse_transform_unit_vector(&Vector3::x_axis());
    ///
    /// assert_relative_eq!(transformed_vector, -Vector3::y_axis(), epsilon = 1.0e-6);
    /// ```
    #[inline]
    pub fn inverse_transform_unit_vector(&self, v: &Unit<VectorN<N, D>>) -> Unit<VectorN<N, D>> {
        Unit::new_unchecked(self.inverse_transform_vector(&**v))
    }
}

impl<N: Scalar + Eq, D: DimName> Eq for Rotation<N, D> where DefaultAllocator: Allocator<N, D, D> {}

impl<N: Scalar + PartialEq, D: DimName> PartialEq for Rotation<N, D>
where
    DefaultAllocator: Allocator<N, D, D>,
{
    #[inline]
    fn eq(&self, right: &Self) -> bool {
        self.matrix == right.matrix
    }
}

impl<N, D: DimName> AbsDiffEq for Rotation<N, D>
where
    N: Scalar + AbsDiffEq,
    DefaultAllocator: Allocator<N, D, D>,
    N::Epsilon: Copy,
{
    type Epsilon = N::Epsilon;

    #[inline]
    fn default_epsilon() -> Self::Epsilon {
        N::default_epsilon()
    }

    #[inline]
    fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
        self.matrix.abs_diff_eq(&other.matrix, epsilon)
    }
}

impl<N, D: DimName> RelativeEq for Rotation<N, D>
where
    N: Scalar + RelativeEq,
    DefaultAllocator: Allocator<N, D, D>,
    N::Epsilon: Copy,
{
    #[inline]
    fn default_max_relative() -> Self::Epsilon {
        N::default_max_relative()
    }

    #[inline]
    fn relative_eq(
        &self,
        other: &Self,
        epsilon: Self::Epsilon,
        max_relative: Self::Epsilon,
    ) -> bool {
        self.matrix
            .relative_eq(&other.matrix, epsilon, max_relative)
    }
}

impl<N, D: DimName> UlpsEq for Rotation<N, D>
where
    N: Scalar + UlpsEq,
    DefaultAllocator: Allocator<N, D, D>,
    N::Epsilon: Copy,
{
    #[inline]
    fn default_max_ulps() -> u32 {
        N::default_max_ulps()
    }

    #[inline]
    fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
        self.matrix.ulps_eq(&other.matrix, epsilon, max_ulps)
    }
}

/*
 *
 * Display
 *
 */
impl<N, D: DimName> fmt::Display for Rotation<N, D>
where
    N: RealField + fmt::Display,
    DefaultAllocator: Allocator<N, D, D> + Allocator<usize, D, D>,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let precision = f.precision().unwrap_or(3);

        writeln!(f, "Rotation matrix {{")?;
        write!(f, "{:.*}", precision, self.matrix)?;
        writeln!(f, "}}")
    }
}

//          //         /*
//          //          *
//          //          * Absolute
//          //          *
//          //          */
//          //         impl<N: Absolute> Absolute for $t<N> {
//          //             type AbsoluteValue = $submatrix<N::AbsoluteValue>;
//          //
//          //             #[inline]
//          //             fn abs(m: &$t<N>) -> $submatrix<N::AbsoluteValue> {
//          //                 Absolute::abs(&m.submatrix)
//          //             }
//          //         }