1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
#[cfg(feature = "arbitrary")] use crate::base::storage::Owned; #[cfg(feature = "arbitrary")] use quickcheck::{Arbitrary, Gen}; use num::One; use rand::distributions::{Distribution, Standard}; use rand::Rng; use simba::scalar::RealField; use simba::simd::SimdRealField; use crate::base::allocator::Allocator; use crate::base::dimension::{DimName, U2, U3}; use crate::base::{DefaultAllocator, Vector2, Vector3}; use crate::geometry::{ AbstractRotation, Isometry, Point, Point3, Rotation2, Rotation3, Similarity, Translation, UnitComplex, UnitQuaternion, }; impl<N: SimdRealField, D: DimName, R> Similarity<N, D, R> where N::Element: SimdRealField, R: AbstractRotation<N, D>, DefaultAllocator: Allocator<N, D>, { /// Creates a new identity similarity. /// /// # Example /// /// ``` /// # use nalgebra::{Similarity2, Point2, Similarity3, Point3}; /// /// let sim = Similarity2::identity(); /// let pt = Point2::new(1.0, 2.0); /// assert_eq!(sim * pt, pt); /// /// let sim = Similarity3::identity(); /// let pt = Point3::new(1.0, 2.0, 3.0); /// assert_eq!(sim * pt, pt); /// ``` #[inline] pub fn identity() -> Self { Self::from_isometry(Isometry::identity(), N::one()) } } impl<N: SimdRealField, D: DimName, R> One for Similarity<N, D, R> where N::Element: SimdRealField, R: AbstractRotation<N, D>, DefaultAllocator: Allocator<N, D>, { /// Creates a new identity similarity. #[inline] fn one() -> Self { Self::identity() } } impl<N: RealField, D: DimName, R> Distribution<Similarity<N, D, R>> for Standard where R: AbstractRotation<N, D>, DefaultAllocator: Allocator<N, D>, Standard: Distribution<N> + Distribution<R>, { #[inline] fn sample<'a, G: Rng + ?Sized>(&self, rng: &mut G) -> Similarity<N, D, R> { let mut s = rng.gen(); while relative_eq!(s, N::zero()) { s = rng.gen() } Similarity::from_isometry(rng.gen(), s) } } impl<N: SimdRealField, D: DimName, R> Similarity<N, D, R> where N::Element: SimdRealField, R: AbstractRotation<N, D>, DefaultAllocator: Allocator<N, D>, { /// The similarity that applies the scaling factor `scaling`, followed by the rotation `r` with /// its axis passing through the point `p`. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{Similarity2, Point2, UnitComplex}; /// let rot = UnitComplex::new(f32::consts::FRAC_PI_2); /// let pt = Point2::new(3.0, 2.0); /// let sim = Similarity2::rotation_wrt_point(rot, pt, 4.0); /// /// assert_relative_eq!(sim * Point2::new(1.0, 2.0), Point2::new(-3.0, 3.0), epsilon = 1.0e-6); /// ``` #[inline] pub fn rotation_wrt_point(r: R, p: Point<N, D>, scaling: N) -> Self { let shift = r.transform_vector(&-&p.coords); Self::from_parts(Translation::from(shift + p.coords), r, scaling) } } #[cfg(feature = "arbitrary")] impl<N, D: DimName, R> Arbitrary for Similarity<N, D, R> where N: RealField + Arbitrary + Send, N::Element: RealField, R: AbstractRotation<N, D> + Arbitrary + Send, DefaultAllocator: Allocator<N, D>, Owned<N, D>: Send, { #[inline] fn arbitrary<G: Gen>(rng: &mut G) -> Self { let mut s: N = Arbitrary::arbitrary(rng); while s.is_zero() { s = Arbitrary::arbitrary(rng) } Self::from_isometry(Arbitrary::arbitrary(rng), s) } } /* * * Constructors for various static dimensions. * */ // 2D similarity. impl<N: SimdRealField> Similarity<N, U2, Rotation2<N>> where N::Element: SimdRealField, { /// Creates a new similarity from a translation, a rotation, and an uniform scaling factor. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{SimilarityMatrix2, Vector2, Point2}; /// let sim = SimilarityMatrix2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2, 3.0); /// /// assert_relative_eq!(sim * Point2::new(2.0, 4.0), Point2::new(-11.0, 8.0), epsilon = 1.0e-6); /// ``` #[inline] pub fn new(translation: Vector2<N>, angle: N, scaling: N) -> Self { Self::from_parts( Translation::from(translation), Rotation2::new(angle), scaling, ) } } impl<N: SimdRealField> Similarity<N, U2, UnitComplex<N>> where N::Element: SimdRealField, { /// Creates a new similarity from a translation and a rotation angle. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{Similarity2, Vector2, Point2}; /// let sim = Similarity2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2, 3.0); /// /// assert_relative_eq!(sim * Point2::new(2.0, 4.0), Point2::new(-11.0, 8.0), epsilon = 1.0e-6); /// ``` #[inline] pub fn new(translation: Vector2<N>, angle: N, scaling: N) -> Self { Self::from_parts( Translation::from(translation), UnitComplex::new(angle), scaling, ) } } // 3D rotation. macro_rules! similarity_construction_impl( ($Rot: ty) => { impl<N: SimdRealField> Similarity<N, U3, $Rot> where N::Element: SimdRealField { /// Creates a new similarity from a translation, rotation axis-angle, and scaling /// factor. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{Similarity3, SimilarityMatrix3, Point3, Vector3}; /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; /// let translation = Vector3::new(1.0, 2.0, 3.0); /// // Point and vector being transformed in the tests. /// let pt = Point3::new(4.0, 5.0, 6.0); /// let vec = Vector3::new(4.0, 5.0, 6.0); /// /// // Similarity with its rotation part represented as a UnitQuaternion /// let sim = Similarity3::new(translation, axisangle, 3.0); /// assert_relative_eq!(sim * pt, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5); /// assert_relative_eq!(sim * vec, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5); /// /// // Similarity with its rotation part represented as a Rotation3 (a 3x3 rotation matrix). /// let sim = SimilarityMatrix3::new(translation, axisangle, 3.0); /// assert_relative_eq!(sim * pt, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5); /// assert_relative_eq!(sim * vec, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5); /// ``` #[inline] pub fn new(translation: Vector3<N>, axisangle: Vector3<N>, scaling: N) -> Self { Self::from_isometry(Isometry::<_, U3, $Rot>::new(translation, axisangle), scaling) } /// Creates an similarity that corresponds to a scaling factor and a local frame of /// an observer standing at the point `eye` and looking toward `target`. /// /// It maps the view direction `target - eye` to the positive `z` axis and the origin to the /// `eye`. /// /// # Arguments /// * eye - The observer position. /// * target - The target position. /// * up - Vertical direction. The only requirement of this parameter is to not be collinear /// to `eye - at`. Non-collinearity is not checked. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{Similarity3, SimilarityMatrix3, Point3, Vector3}; /// let eye = Point3::new(1.0, 2.0, 3.0); /// let target = Point3::new(2.0, 2.0, 3.0); /// let up = Vector3::y(); /// /// // Similarity with its rotation part represented as a UnitQuaternion /// let sim = Similarity3::face_towards(&eye, &target, &up, 3.0); /// assert_eq!(sim * Point3::origin(), eye); /// assert_relative_eq!(sim * Vector3::z(), Vector3::x() * 3.0, epsilon = 1.0e-6); /// /// // Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix). /// let sim = SimilarityMatrix3::face_towards(&eye, &target, &up, 3.0); /// assert_eq!(sim * Point3::origin(), eye); /// assert_relative_eq!(sim * Vector3::z(), Vector3::x() * 3.0, epsilon = 1.0e-6); /// ``` #[inline] pub fn face_towards(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>, scaling: N) -> Self { Self::from_isometry(Isometry::<_, U3, $Rot>::face_towards(eye, target, up), scaling) } /// Deprecated: Use [SimilarityMatrix3::face_towards] instead. #[deprecated(note="renamed to `face_towards`")] pub fn new_observer_frames(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>, scaling: N) -> Self { Self::face_towards(eye, target, up, scaling) } /// Builds a right-handed look-at view matrix including scaling factor. /// /// This conforms to the common notion of right handed look-at matrix from the computer /// graphics community. /// /// # Arguments /// * eye - The eye position. /// * target - The target position. /// * up - A vector approximately aligned with required the vertical axis. The only /// requirement of this parameter is to not be collinear to `target - eye`. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{Similarity3, SimilarityMatrix3, Point3, Vector3}; /// let eye = Point3::new(1.0, 2.0, 3.0); /// let target = Point3::new(2.0, 2.0, 3.0); /// let up = Vector3::y(); /// /// // Similarity with its rotation part represented as a UnitQuaternion /// let iso = Similarity3::look_at_rh(&eye, &target, &up, 3.0); /// assert_relative_eq!(iso * Vector3::x(), -Vector3::z() * 3.0, epsilon = 1.0e-6); /// /// // Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix). /// let iso = SimilarityMatrix3::look_at_rh(&eye, &target, &up, 3.0); /// assert_relative_eq!(iso * Vector3::x(), -Vector3::z() * 3.0, epsilon = 1.0e-6); /// ``` #[inline] pub fn look_at_rh(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>, scaling: N) -> Self { Self::from_isometry(Isometry::<_, U3, $Rot>::look_at_rh(eye, target, up), scaling) } /// Builds a left-handed look-at view matrix including a scaling factor. /// /// This conforms to the common notion of left handed look-at matrix from the computer /// graphics community. /// /// # Arguments /// * eye - The eye position. /// * target - The target position. /// * up - A vector approximately aligned with required the vertical axis. The only /// requirement of this parameter is to not be collinear to `target - eye`. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{Similarity3, SimilarityMatrix3, Point3, Vector3}; /// let eye = Point3::new(1.0, 2.0, 3.0); /// let target = Point3::new(2.0, 2.0, 3.0); /// let up = Vector3::y(); /// /// // Similarity with its rotation part represented as a UnitQuaternion /// let sim = Similarity3::look_at_lh(&eye, &target, &up, 3.0); /// assert_relative_eq!(sim * Vector3::x(), Vector3::z() * 3.0, epsilon = 1.0e-6); /// /// // Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix). /// let sim = SimilarityMatrix3::look_at_lh(&eye, &target, &up, 3.0); /// assert_relative_eq!(sim * Vector3::x(), Vector3::z() * 3.0, epsilon = 1.0e-6); /// ``` #[inline] pub fn look_at_lh(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>, scaling: N) -> Self { Self::from_isometry(Isometry::<_, _, $Rot>::look_at_lh(eye, target, up), scaling) } } } ); similarity_construction_impl!(Rotation3<N>); similarity_construction_impl!(UnitQuaternion<N>);