Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
#[cfg(feature = "arbitrary")]
use crate::base::storage::Owned;
#[cfg(feature = "arbitrary")]
use quickcheck::{Arbitrary, Gen};

use num::{One, Zero};
use rand::distributions::{Distribution, Standard};
use rand::Rng;

use simba::scalar::ClosedAdd;

use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, U1, U2, U3, U4, U5, U6};
use crate::base::{DefaultAllocator, Scalar, VectorN};

use crate::geometry::Translation;

impl<N: Scalar + Zero, D: DimName> Translation<N, D>
where
    DefaultAllocator: Allocator<N, D>,
{
    /// Creates a new identity translation.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{Point2, Point3, Translation2, Translation3};
    /// let t = Translation2::identity();
    /// let p = Point2::new(1.0, 2.0);
    /// assert_eq!(t * p, p);
    ///
    /// // Works in all dimensions.
    /// let t = Translation3::identity();
    /// let p = Point3::new(1.0, 2.0, 3.0);
    /// assert_eq!(t * p, p);
    /// ```
    #[inline]
    pub fn identity() -> Translation<N, D> {
        Self::from(VectorN::<N, D>::from_element(N::zero()))
    }
}

impl<N: Scalar + Zero + ClosedAdd, D: DimName> One for Translation<N, D>
where
    DefaultAllocator: Allocator<N, D>,
{
    #[inline]
    fn one() -> Self {
        Self::identity()
    }
}

impl<N: Scalar, D: DimName> Distribution<Translation<N, D>> for Standard
where
    DefaultAllocator: Allocator<N, D>,
    Standard: Distribution<N>,
{
    #[inline]
    fn sample<'a, G: Rng + ?Sized>(&self, rng: &'a mut G) -> Translation<N, D> {
        Translation::from(rng.gen::<VectorN<N, D>>())
    }
}

#[cfg(feature = "arbitrary")]
impl<N: Scalar + Arbitrary, D: DimName> Arbitrary for Translation<N, D>
where
    DefaultAllocator: Allocator<N, D>,
    Owned<N, D>: Send,
{
    #[inline]
    fn arbitrary<G: Gen>(rng: &mut G) -> Self {
        let v: VectorN<N, D> = Arbitrary::arbitrary(rng);
        Self::from(v)
    }
}

/*
 *
 * Small translation construction from components.
 *
 */
macro_rules! componentwise_constructors_impl(
    ($($doc: expr; $D: ty, $($args: ident:$irow: expr),*);* $(;)*) => {$(
        impl<N: Scalar> Translation<N, $D>
            where DefaultAllocator: Allocator<N, $D> {
            #[doc = "Initializes this translation from its components."]
            #[doc = "# Example\n```"]
            #[doc = $doc]
            #[doc = "```"]
            #[inline]
            pub fn new($($args: N),*) -> Self {
                Self::from(VectorN::<N, $D>::new($($args),*))
            }
        }
    )*}
);

componentwise_constructors_impl!(
    "# use nalgebra::Translation1;\nlet t = Translation1::new(1.0);\nassert!(t.vector.x == 1.0);";
    U1, x:0;
    "# use nalgebra::Translation2;\nlet t = Translation2::new(1.0, 2.0);\nassert!(t.vector.x == 1.0 && t.vector.y == 2.0);";
    U2, x:0, y:1;
    "# use nalgebra::Translation3;\nlet t = Translation3::new(1.0, 2.0, 3.0);\nassert!(t.vector.x == 1.0 && t.vector.y == 2.0 && t.vector.z == 3.0);";
    U3, x:0, y:1, z:2;
    "# use nalgebra::Translation4;\nlet t = Translation4::new(1.0, 2.0, 3.0, 4.0);\nassert!(t.vector.x == 1.0 && t.vector.y == 2.0 && t.vector.z == 3.0 && t.vector.w == 4.0);";
    U4, x:0, y:1, z:2, w:3;
    "# use nalgebra::Translation5;\nlet t = Translation5::new(1.0, 2.0, 3.0, 4.0, 5.0);\nassert!(t.vector.x == 1.0 && t.vector.y == 2.0 && t.vector.z == 3.0 && t.vector.w == 4.0 && t.vector.a == 5.0);";
    U5, x:0, y:1, z:2, w:3, a:4;
    "# use nalgebra::Translation6;\nlet t = Translation6::new(1.0, 2.0, 3.0, 4.0, 5.0, 6.0);\nassert!(t.vector.x == 1.0 && t.vector.y == 2.0 && t.vector.z == 3.0 && t.vector.w == 4.0 && t.vector.a == 5.0 && t.vector.b == 6.0);";
    U6, x:0, y:1, z:2, w:3, a:4, b:5;
);