1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
use std::cmp;
use crate::base::allocator::Allocator;
use crate::base::default_allocator::DefaultAllocator;
use crate::base::dimension::{Dim, DimAdd, DimDiff, DimSub, DimSum};
use crate::storage::Storage;
use crate::{zero, RealField, Vector, VectorN, U1};
impl<N: RealField, D1: Dim, S1: Storage<N, D1>> Vector<N, D1, S1> {
pub fn convolve_full<D2, S2>(
&self,
kernel: Vector<N, D2, S2>,
) -> VectorN<N, DimDiff<DimSum<D1, D2>, U1>>
where
D1: DimAdd<D2>,
D2: DimAdd<D1, Output = DimSum<D1, D2>>,
DimSum<D1, D2>: DimSub<U1>,
S2: Storage<N, D2>,
DefaultAllocator: Allocator<N, DimDiff<DimSum<D1, D2>, U1>>,
{
let vec = self.len();
let ker = kernel.len();
if ker == 0 || ker > vec {
panic!("convolve_full expects `self.len() >= kernel.len() > 0`, received {} and {} respectively.",vec,ker);
}
let result_len = self.data.shape().0.add(kernel.data.shape().0).sub(U1);
let mut conv = VectorN::zeros_generic(result_len, U1);
for i in 0..(vec + ker - 1) {
let u_i = if i > vec { i - ker } else { 0 };
let u_f = cmp::min(i, vec - 1);
if u_i == u_f {
conv[i] += self[u_i] * kernel[(i - u_i)];
} else {
for u in u_i..(u_f + 1) {
if i - u < ker {
conv[i] += self[u] * kernel[(i - u)];
}
}
}
}
conv
}
pub fn convolve_valid<D2, S2>(
&self,
kernel: Vector<N, D2, S2>,
) -> VectorN<N, DimDiff<DimSum<D1, U1>, D2>>
where
D1: DimAdd<U1>,
D2: Dim,
DimSum<D1, U1>: DimSub<D2>,
S2: Storage<N, D2>,
DefaultAllocator: Allocator<N, DimDiff<DimSum<D1, U1>, D2>>,
{
let vec = self.len();
let ker = kernel.len();
if ker == 0 || ker > vec {
panic!("convolve_valid expects `self.len() >= kernel.len() > 0`, received {} and {} respectively.",vec,ker);
}
let result_len = self.data.shape().0.add(U1).sub(kernel.data.shape().0);
let mut conv = VectorN::zeros_generic(result_len, U1);
for i in 0..(vec - ker + 1) {
for j in 0..ker {
conv[i] += self[i + j] * kernel[ker - j - 1];
}
}
conv
}
pub fn convolve_same<D2, S2>(&self, kernel: Vector<N, D2, S2>) -> VectorN<N, D1>
where
D2: Dim,
S2: Storage<N, D2>,
DefaultAllocator: Allocator<N, D1>,
{
let vec = self.len();
let ker = kernel.len();
if ker == 0 || ker > vec {
panic!("convolve_same expects `self.len() >= kernel.len() > 0`, received {} and {} respectively.",vec,ker);
}
let mut conv = VectorN::zeros_generic(self.data.shape().0, U1);
for i in 0..vec {
for j in 0..ker {
let val = if i + j < 1 || i + j >= vec + 1 {
zero::<N>()
} else {
self[i + j - 1]
};
conv[i] += val * kernel[ker - j - 1];
}
}
conv
}
}