Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
use super::Complex;
use num_traits::{AsPrimitive, FromPrimitive, Num, NumCast, ToPrimitive};

macro_rules! impl_to_primitive {
    ($ty:ty, $to:ident) => {
        #[inline]
        fn $to(&self) -> Option<$ty> {
            if self.im.is_zero() {
                self.re.$to()
            } else {
                None
            }
        }
    };
} // impl_to_primitive

// Returns None if Complex part is non-zero
impl<T: ToPrimitive + Num> ToPrimitive for Complex<T> {
    impl_to_primitive!(usize, to_usize);
    impl_to_primitive!(isize, to_isize);
    impl_to_primitive!(u8, to_u8);
    impl_to_primitive!(u16, to_u16);
    impl_to_primitive!(u32, to_u32);
    impl_to_primitive!(u64, to_u64);
    impl_to_primitive!(i8, to_i8);
    impl_to_primitive!(i16, to_i16);
    impl_to_primitive!(i32, to_i32);
    impl_to_primitive!(i64, to_i64);
    impl_to_primitive!(u128, to_u128);
    impl_to_primitive!(i128, to_i128);
    impl_to_primitive!(f32, to_f32);
    impl_to_primitive!(f64, to_f64);
}

macro_rules! impl_from_primitive {
    ($ty:ty, $from_xx:ident) => {
        #[inline]
        fn $from_xx(n: $ty) -> Option<Self> {
            Some(Complex {
                re: T::$from_xx(n)?,
                im: T::zero(),
            })
        }
    };
} // impl_from_primitive

impl<T: FromPrimitive + Num> FromPrimitive for Complex<T> {
    impl_from_primitive!(usize, from_usize);
    impl_from_primitive!(isize, from_isize);
    impl_from_primitive!(u8, from_u8);
    impl_from_primitive!(u16, from_u16);
    impl_from_primitive!(u32, from_u32);
    impl_from_primitive!(u64, from_u64);
    impl_from_primitive!(i8, from_i8);
    impl_from_primitive!(i16, from_i16);
    impl_from_primitive!(i32, from_i32);
    impl_from_primitive!(i64, from_i64);
    impl_from_primitive!(u128, from_u128);
    impl_from_primitive!(i128, from_i128);
    impl_from_primitive!(f32, from_f32);
    impl_from_primitive!(f64, from_f64);
}

impl<T: NumCast + Num> NumCast for Complex<T> {
    fn from<U: ToPrimitive>(n: U) -> Option<Self> {
        Some(Complex {
            re: T::from(n)?,
            im: T::zero(),
        })
    }
}

impl<T, U> AsPrimitive<U> for Complex<T>
where
    T: AsPrimitive<U>,
    U: 'static + Copy,
{
    fn as_(self) -> U {
        self.re.as_()
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_to_primitive() {
        let a: Complex<u32> = Complex { re: 3, im: 0 };
        assert_eq!(a.to_i32(), Some(3_i32));
        let b: Complex<u32> = Complex { re: 3, im: 1 };
        assert_eq!(b.to_i32(), None);
        let x: Complex<f32> = Complex { re: 1.0, im: 0.1 };
        assert_eq!(x.to_f32(), None);
        let y: Complex<f32> = Complex { re: 1.0, im: 0.0 };
        assert_eq!(y.to_f32(), Some(1.0));
        let z: Complex<f32> = Complex { re: 1.0, im: 0.0 };
        assert_eq!(z.to_i32(), Some(1));
    }

    #[test]
    fn test_from_primitive() {
        let a: Complex<f32> = FromPrimitive::from_i32(2).unwrap();
        assert_eq!(a, Complex { re: 2.0, im: 0.0 });
    }

    #[test]
    fn test_num_cast() {
        let a: Complex<f32> = NumCast::from(2_i32).unwrap();
        assert_eq!(a, Complex { re: 2.0, im: 0.0 });
    }

    #[test]
    fn test_as_primitive() {
        let a: Complex<f32> = Complex { re: 2.0, im: 0.2 };
        let a_: i32 = a.as_();
        assert_eq!(a_, 2_i32);
    }
}