Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
// Copyright 2016 Amanieu d'Antras
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use crate::raw_mutex::RawMutex;
use lock_api;

/// A mutual exclusion primitive useful for protecting shared data
///
/// This mutex will block threads waiting for the lock to become available. The
/// mutex can also be statically initialized or created via a `new`
/// constructor. Each mutex has a type parameter which represents the data that
/// it is protecting. The data can only be accessed through the RAII guards
/// returned from `lock` and `try_lock`, which guarantees that the data is only
/// ever accessed when the mutex is locked.
///
/// # Fairness
///
/// A typical unfair lock can often end up in a situation where a single thread
/// quickly acquires and releases the same mutex in succession, which can starve
/// other threads waiting to acquire the mutex. While this improves throughput
/// because it doesn't force a context switch when a thread tries to re-acquire
/// a mutex it has just released, this can starve other threads.
///
/// This mutex uses [eventual fairness](https://trac.webkit.org/changeset/203350)
/// to ensure that the lock will be fair on average without sacrificing
/// throughput. This is done by forcing a fair unlock on average every 0.5ms,
/// which will force the lock to go to the next thread waiting for the mutex.
///
/// Additionally, any critical section longer than 1ms will always use a fair
/// unlock, which has a negligible impact on throughput considering the length
/// of the critical section.
///
/// You can also force a fair unlock by calling `MutexGuard::unlock_fair` when
/// unlocking a mutex instead of simply dropping the `MutexGuard`.
///
/// # Differences from the standard library `Mutex`
///
/// - No poisoning, the lock is released normally on panic.
/// - Only requires 1 byte of space, whereas the standard library boxes the
///   `Mutex` due to platform limitations.
/// - Can be statically constructed (requires the `const_fn` nightly feature).
/// - Does not require any drop glue when dropped.
/// - Inline fast path for the uncontended case.
/// - Efficient handling of micro-contention using adaptive spinning.
/// - Allows raw locking & unlocking without a guard.
/// - Supports eventual fairness so that the mutex is fair on average.
/// - Optionally allows making the mutex fair by calling `MutexGuard::unlock_fair`.
///
/// # Examples
///
/// ```
/// use parking_lot::Mutex;
/// use std::sync::{Arc, mpsc::channel};
/// use std::thread;
///
/// const N: usize = 10;
///
/// // Spawn a few threads to increment a shared variable (non-atomically), and
/// // let the main thread know once all increments are done.
/// //
/// // Here we're using an Arc to share memory among threads, and the data inside
/// // the Arc is protected with a mutex.
/// let data = Arc::new(Mutex::new(0));
///
/// let (tx, rx) = channel();
/// for _ in 0..10 {
///     let (data, tx) = (Arc::clone(&data), tx.clone());
///     thread::spawn(move || {
///         // The shared state can only be accessed once the lock is held.
///         // Our non-atomic increment is safe because we're the only thread
///         // which can access the shared state when the lock is held.
///         let mut data = data.lock();
///         *data += 1;
///         if *data == N {
///             tx.send(()).unwrap();
///         }
///         // the lock is unlocked here when `data` goes out of scope.
///     });
/// }
///
/// rx.recv().unwrap();
/// ```
pub type Mutex<T> = lock_api::Mutex<RawMutex, T>;

/// Creates a new mutex in an unlocked state ready for use.
///
/// This allows creating a mutex in a constant context on stable Rust.
pub const fn const_mutex<T>(val: T) -> Mutex<T> {
    Mutex::const_new(<RawMutex as lock_api::RawMutex>::INIT, val)
}

/// An RAII implementation of a "scoped lock" of a mutex. When this structure is
/// dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be accessed through this guard via its
/// `Deref` and `DerefMut` implementations.
pub type MutexGuard<'a, T> = lock_api::MutexGuard<'a, RawMutex, T>;

/// An RAII mutex guard returned by `MutexGuard::map`, which can point to a
/// subfield of the protected data.
///
/// The main difference between `MappedMutexGuard` and `MutexGuard` is that the
/// former doesn't support temporarily unlocking and re-locking, since that
/// could introduce soundness issues if the locked object is modified by another
/// thread.
pub type MappedMutexGuard<'a, T> = lock_api::MappedMutexGuard<'a, RawMutex, T>;

#[cfg(test)]
mod tests {
    use crate::{Condvar, Mutex};
    use std::sync::atomic::{AtomicUsize, Ordering};
    use std::sync::mpsc::channel;
    use std::sync::Arc;
    use std::thread;

    #[cfg(feature = "serde")]
    use bincode::{deserialize, serialize};

    struct Packet<T>(Arc<(Mutex<T>, Condvar)>);

    #[derive(Eq, PartialEq, Debug)]
    struct NonCopy(i32);

    unsafe impl<T: Send> Send for Packet<T> {}
    unsafe impl<T> Sync for Packet<T> {}

    #[test]
    fn smoke() {
        let m = Mutex::new(());
        drop(m.lock());
        drop(m.lock());
    }

    #[test]
    fn lots_and_lots() {
        const J: u32 = 1000;
        const K: u32 = 3;

        let m = Arc::new(Mutex::new(0));

        fn inc(m: &Mutex<u32>) {
            for _ in 0..J {
                *m.lock() += 1;
            }
        }

        let (tx, rx) = channel();
        for _ in 0..K {
            let tx2 = tx.clone();
            let m2 = m.clone();
            thread::spawn(move || {
                inc(&m2);
                tx2.send(()).unwrap();
            });
            let tx2 = tx.clone();
            let m2 = m.clone();
            thread::spawn(move || {
                inc(&m2);
                tx2.send(()).unwrap();
            });
        }

        drop(tx);
        for _ in 0..2 * K {
            rx.recv().unwrap();
        }
        assert_eq!(*m.lock(), J * K * 2);
    }

    #[test]
    fn try_lock() {
        let m = Mutex::new(());
        *m.try_lock().unwrap() = ();
    }

    #[test]
    fn test_into_inner() {
        let m = Mutex::new(NonCopy(10));
        assert_eq!(m.into_inner(), NonCopy(10));
    }

    #[test]
    fn test_into_inner_drop() {
        struct Foo(Arc<AtomicUsize>);
        impl Drop for Foo {
            fn drop(&mut self) {
                self.0.fetch_add(1, Ordering::SeqCst);
            }
        }
        let num_drops = Arc::new(AtomicUsize::new(0));
        let m = Mutex::new(Foo(num_drops.clone()));
        assert_eq!(num_drops.load(Ordering::SeqCst), 0);
        {
            let _inner = m.into_inner();
            assert_eq!(num_drops.load(Ordering::SeqCst), 0);
        }
        assert_eq!(num_drops.load(Ordering::SeqCst), 1);
    }

    #[test]
    fn test_get_mut() {
        let mut m = Mutex::new(NonCopy(10));
        *m.get_mut() = NonCopy(20);
        assert_eq!(m.into_inner(), NonCopy(20));
    }

    #[test]
    fn test_mutex_arc_condvar() {
        let packet = Packet(Arc::new((Mutex::new(false), Condvar::new())));
        let packet2 = Packet(packet.0.clone());
        let (tx, rx) = channel();
        let _t = thread::spawn(move || {
            // wait until parent gets in
            rx.recv().unwrap();
            let &(ref lock, ref cvar) = &*packet2.0;
            let mut lock = lock.lock();
            *lock = true;
            cvar.notify_one();
        });

        let &(ref lock, ref cvar) = &*packet.0;
        let mut lock = lock.lock();
        tx.send(()).unwrap();
        assert!(!*lock);
        while !*lock {
            cvar.wait(&mut lock);
        }
    }

    #[test]
    fn test_mutex_arc_nested() {
        // Tests nested mutexes and access
        // to underlying data.
        let arc = Arc::new(Mutex::new(1));
        let arc2 = Arc::new(Mutex::new(arc));
        let (tx, rx) = channel();
        let _t = thread::spawn(move || {
            let lock = arc2.lock();
            let lock2 = lock.lock();
            assert_eq!(*lock2, 1);
            tx.send(()).unwrap();
        });
        rx.recv().unwrap();
    }

    #[test]
    fn test_mutex_arc_access_in_unwind() {
        let arc = Arc::new(Mutex::new(1));
        let arc2 = arc.clone();
        let _ = thread::spawn(move || {
            struct Unwinder {
                i: Arc<Mutex<i32>>,
            }
            impl Drop for Unwinder {
                fn drop(&mut self) {
                    *self.i.lock() += 1;
                }
            }
            let _u = Unwinder { i: arc2 };
            panic!();
        })
        .join();
        let lock = arc.lock();
        assert_eq!(*lock, 2);
    }

    #[test]
    fn test_mutex_unsized() {
        let mutex: &Mutex<[i32]> = &Mutex::new([1, 2, 3]);
        {
            let b = &mut *mutex.lock();
            b[0] = 4;
            b[2] = 5;
        }
        let comp: &[i32] = &[4, 2, 5];
        assert_eq!(&*mutex.lock(), comp);
    }

    #[test]
    fn test_mutexguard_sync() {
        fn sync<T: Sync>(_: T) {}

        let mutex = Mutex::new(());
        sync(mutex.lock());
    }

    #[test]
    fn test_mutex_debug() {
        let mutex = Mutex::new(vec![0u8, 10]);

        assert_eq!(format!("{:?}", mutex), "Mutex { data: [0, 10] }");
        let _lock = mutex.lock();
        assert_eq!(format!("{:?}", mutex), "Mutex { data: <locked> }");
    }

    #[cfg(feature = "serde")]
    #[test]
    fn test_serde() {
        let contents: Vec<u8> = vec![0, 1, 2];
        let mutex = Mutex::new(contents.clone());

        let serialized = serialize(&mutex).unwrap();
        let deserialized: Mutex<Vec<u8>> = deserialize(&serialized).unwrap();

        assert_eq!(*(mutex.lock()), *(deserialized.lock()));
        assert_eq!(contents, *(deserialized.lock()));
    }
}