1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
//! Compute a shortest path using the [breadth-first search
//! algorithm](https://en.wikipedia.org/wiki/Breadth-first_search).

use indexmap::map::Entry::Vacant;
use indexmap::IndexMap;
use std::collections::{HashSet, VecDeque};
use std::hash::Hash;
use std::usize;

use super::reverse_path;

/// Compute a shortest path using the [breadth-first search
/// algorithm](https://en.wikipedia.org/wiki/Breadth-first_search).
///
/// The shortest path starting from `start` up to a node for which `success` returns `true` is
/// computed and returned in a `Some`. If no path can be found, `None`
/// is returned instead.
///
/// - `start` is the starting node.
/// - `successors` returns a list of successors for a given node.
/// - `success` checks whether the goal has been reached. It is not a node as some problems require
/// a dynamic solution instead of a fixed node.
///
/// A node will never be included twice in the path as determined by the `Eq` relationship.
///
/// The returned path comprises both the start and end node.
///
/// # Example
///
/// We will search the shortest path on a chess board to go from (1, 1) to (4, 6) doing only knight
/// moves.
///
/// The first version uses an explicit type `Pos` on which the required traits are derived.
///
/// ```
/// use pathfinding::prelude::bfs;
///
/// #[derive(Clone, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
/// struct Pos(i32, i32);
///
/// impl Pos {
///   fn successors(&self) -> Vec<Pos> {
///     let &Pos(x, y) = self;
///     vec![Pos(x+1,y+2), Pos(x+1,y-2), Pos(x-1,y+2), Pos(x-1,y-2),
///          Pos(x+2,y+1), Pos(x+2,y-1), Pos(x-2,y+1), Pos(x-2,y-1)]
///   }
/// }
///
/// static GOAL: Pos = Pos(4, 6);
/// let result = bfs(&Pos(1, 1), |p| p.successors(), |p| *p == GOAL);
/// assert_eq!(result.expect("no path found").len(), 5);
/// ```
///
/// The second version does not declare a `Pos` type, makes use of more closures,
/// and is thus shorter.
///
/// ```
/// use pathfinding::prelude::bfs;
///
/// static GOAL: (i32, i32) = (4, 6);
/// let result = bfs(&(1, 1),
///                  |&(x, y)| vec![(x+1,y+2), (x+1,y-2), (x-1,y+2), (x-1,y-2),
///                                 (x+2,y+1), (x+2,y-1), (x-2,y+1), (x-2,y-1)],
///                  |&p| p == GOAL);
/// assert_eq!(result.expect("no path found").len(), 5);
/// ```
pub fn bfs<N, FN, IN, FS>(start: &N, successors: FN, success: FS) -> Option<Vec<N>>
where
    N: Eq + Hash + Clone,
    FN: FnMut(&N) -> IN,
    IN: IntoIterator<Item = N>,
    FS: FnMut(&N) -> bool,
{
    bfs_core(start, successors, success, true)
}

fn bfs_core<N, FN, IN, FS>(
    start: &N,
    mut successors: FN,
    mut success: FS,
    check_first: bool,
) -> Option<Vec<N>>
where
    N: Eq + Hash + Clone,
    FN: FnMut(&N) -> IN,
    IN: IntoIterator<Item = N>,
    FS: FnMut(&N) -> bool,
{
    if check_first && success(start) {
        return Some(vec![start.clone()]);
    }
    let mut to_see = VecDeque::new();
    let mut parents: IndexMap<N, usize> = IndexMap::new();
    to_see.push_back(0);
    parents.insert(start.clone(), usize::max_value());
    while let Some(i) = to_see.pop_front() {
        let node = parents.get_index(i).unwrap().0;
        for successor in successors(node) {
            if success(&successor) {
                let mut path = reverse_path(&parents, |&p| p, i);
                path.push(successor);
                return Some(path);
            }
            if let Vacant(e) = parents.entry(successor) {
                to_see.push_back(e.index());
                e.insert(i);
            }
        }
    }
    None
}

/// Return one of the shortest loop from start to start if it exists, `None` otherwise.
///
/// - `start` is the starting node.
/// - `successors` returns a list of successors for a given node.
///
/// Except the start node which will be included both at the beginning and the end of
/// the path, a node will never be included twice in the path as determined
/// by the `Eq` relationship.
pub fn bfs_loop<N, FN, IN>(start: &N, successors: FN) -> Option<Vec<N>>
where
    N: Eq + Hash + Clone,
    FN: FnMut(&N) -> IN,
    IN: IntoIterator<Item = N>,
{
    bfs_core(start, successors, |n| n == start, false)
}

/// Visit all nodes that are reachable from a start node. The node will be visited
/// in BFS order, starting from the `start` node and following the order returned
/// by the `successors` function.
///
/// # Examples
///
/// The iterator stops when there are no new nodes to visit:
///
/// ```
/// use pathfinding::prelude::bfs_reach;
///
/// let all_nodes = bfs_reach(3, |_| (1..=5)).collect::<Vec<_>>();
/// assert_eq!(all_nodes, vec![3, 1, 2, 4, 5]);
/// ```
///
/// The iterator can be used as a generator. Here are for examples
/// the multiples of 2 and 3 (although not in natural order but in
/// the order they are discovered by the BFS algorithm):
///
/// ```
/// use pathfinding::prelude::bfs_reach;
///
/// let mut it = bfs_reach(1, |&n| vec![n*2, n*3]).skip(1);
/// assert_eq!(it.next(), Some(2));  // 1*2
/// assert_eq!(it.next(), Some(3));  // 1*3
/// assert_eq!(it.next(), Some(4));  // (1*2)*2
/// assert_eq!(it.next(), Some(6));  // (1*2)*3
/// // (1*3)*2 == 6 which has been seen already
/// assert_eq!(it.next(), Some(9));  // (1*3)*3
/// assert_eq!(it.next(), Some(8));  // ((1*2)*2)*2
/// assert_eq!(it.next(), Some(12)); // ((1*2)*2)*3
/// ```
pub fn bfs_reach<N, FN, IN>(start: N, successors: FN) -> BfsReachable<N, FN>
where
    N: Eq + Hash + Clone,
    FN: FnMut(&N) -> IN,
    IN: IntoIterator<Item = N>,
{
    let (mut to_see, mut seen) = (VecDeque::new(), HashSet::new());
    to_see.push_back(start.clone());
    seen.insert(start);
    BfsReachable {
        to_see,
        seen,
        successors,
    }
}

/// Struct returned by [`bfs_reach`](crate::directed::bfs::bfs_reach).
pub struct BfsReachable<N, FN> {
    to_see: VecDeque<N>,
    seen: HashSet<N>,
    successors: FN,
}

impl<N, FN, IN> Iterator for BfsReachable<N, FN>
where
    N: Eq + Hash + Clone,
    FN: FnMut(&N) -> IN,
    IN: IntoIterator<Item = N>,
{
    type Item = N;

    fn next(&mut self) -> Option<Self::Item> {
        if let Some(n) = self.to_see.pop_front() {
            for s in (self.successors)(&n) {
                if !self.seen.contains(&s) {
                    self.to_see.push_back(s.clone());
                    self.seen.insert(s);
                }
            }
            Some(n)
        } else {
            None
        }
    }
}