1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
//! Compute dominators of a control-flow graph.
//!
//! # The Dominance Relation
//!
//! In a directed graph with a root node **R**, a node **A** is said to *dominate* a
//! node **B** iff every path from **R** to **B** contains **A**.
//!
//! The node **A** is said to *strictly dominate* the node **B** iff **A** dominates
//! **B** and **A ≠ B**.
//!
//! The node **A** is said to be the *immediate dominator* of a node **B** iff it
//! strictly dominates **B** and there does not exist any node **C** where **A**
//! dominates **C** and **C** dominates **B**.

use std::cmp::Ordering;
use std::collections::{HashMap, HashSet};
use std::hash::Hash;

use crate::visit::{DfsPostOrder, GraphBase, IntoNeighbors, Visitable, Walker};

/// The dominance relation for some graph and root.
#[derive(Debug, Clone)]
pub struct Dominators<N>
where
    N: Copy + Eq + Hash,
{
    root: N,
    dominators: HashMap<N, N>,
}

impl<N> Dominators<N>
where
    N: Copy + Eq + Hash,
{
    /// Get the root node used to construct these dominance relations.
    pub fn root(&self) -> N {
        self.root
    }

    /// Get the immediate dominator of the given node.
    ///
    /// Returns `None` for any node that is not reachable from the root, and for
    /// the root itself.
    pub fn immediate_dominator(&self, node: N) -> Option<N> {
        if node == self.root {
            None
        } else {
            self.dominators.get(&node).cloned()
        }
    }

    /// Iterate over the given node's strict dominators.
    ///
    /// If the given node is not reachable from the root, then `None` is
    /// returned.
    pub fn strict_dominators(&self, node: N) -> Option<DominatorsIter<N>> {
        if self.dominators.contains_key(&node) {
            Some(DominatorsIter {
                dominators: self,
                node: self.immediate_dominator(node),
            })
        } else {
            None
        }
    }

    /// Iterate over all of the given node's dominators (including the given
    /// node itself).
    ///
    /// If the given node is not reachable from the root, then `None` is
    /// returned.
    pub fn dominators(&self, node: N) -> Option<DominatorsIter<N>> {
        if self.dominators.contains_key(&node) {
            Some(DominatorsIter {
                dominators: self,
                node: Some(node),
            })
        } else {
            None
        }
    }
}

/// Iterator for a node's dominators.
pub struct DominatorsIter<'a, N>
where
    N: 'a + Copy + Eq + Hash,
{
    dominators: &'a Dominators<N>,
    node: Option<N>,
}

impl<'a, N> Iterator for DominatorsIter<'a, N>
where
    N: 'a + Copy + Eq + Hash,
{
    type Item = N;

    fn next(&mut self) -> Option<Self::Item> {
        let next = self.node.take();
        if let Some(next) = next {
            self.node = self.dominators.immediate_dominator(next);
        }
        next
    }
}

/// The undefined dominator sentinel, for when we have not yet discovered a
/// node's dominator.
const UNDEFINED: usize = ::std::usize::MAX;

/// This is an implementation of the engineered ["Simple, Fast Dominance
/// Algorithm"][0] discovered by Cooper et al.
///
/// This algorithm is **O(|V|²)**, and therefore has slower theoretical running time
/// than the Lengauer-Tarjan algorithm (which is **O(|E| log |V|)**. However,
/// Cooper et al found it to be faster in practice on control flow graphs of up
/// to ~30,000 vertices.
///
/// [0]: http://www.cs.rice.edu/~keith/EMBED/dom.pdf
pub fn simple_fast<G>(graph: G, root: G::NodeId) -> Dominators<G::NodeId>
where
    G: IntoNeighbors + Visitable,
    <G as GraphBase>::NodeId: Eq + Hash,
{
    let (post_order, predecessor_sets) = simple_fast_post_order(graph, root);
    let length = post_order.len();
    debug_assert!(length > 0);
    debug_assert!(post_order.last() == Some(&root));

    // From here on out we use indices into `post_order` instead of actual
    // `NodeId`s wherever possible. This greatly improves the performance of
    // this implementation, but we have to pay a little bit of upfront cost to
    // convert our data structures to play along first.

    // Maps a node to its index into `post_order`.
    let node_to_post_order_idx: HashMap<_, _> = post_order
        .iter()
        .enumerate()
        .map(|(idx, &node)| (node, idx))
        .collect();

    // Maps a node's `post_order` index to its set of predecessors's indices
    // into `post_order` (as a vec).
    let idx_to_predecessor_vec =
        predecessor_sets_to_idx_vecs(&post_order, &node_to_post_order_idx, predecessor_sets);

    let mut dominators = vec![UNDEFINED; length];
    dominators[length - 1] = length - 1;

    let mut changed = true;
    while changed {
        changed = false;

        // Iterate in reverse post order, skipping the root.

        for idx in (0..length - 1).rev() {
            debug_assert!(post_order[idx] != root);

            // Take the intersection of every predecessor's dominator set; that
            // is the current best guess at the immediate dominator for this
            // node.

            let new_idom_idx = {
                let mut predecessors = idx_to_predecessor_vec[idx]
                    .iter()
                    .filter(|&&p| dominators[p] != UNDEFINED);
                let new_idom_idx = predecessors.next().expect(
                    "Because the root is initialized to dominate itself, and is the \
                     first node in every path, there must exist a predecessor to this \
                     node that also has a dominator",
                );
                predecessors.fold(*new_idom_idx, |new_idom_idx, &predecessor_idx| {
                    intersect(&dominators, new_idom_idx, predecessor_idx)
                })
            };

            debug_assert!(new_idom_idx < length);

            if new_idom_idx != dominators[idx] {
                dominators[idx] = new_idom_idx;
                changed = true;
            }
        }
    }

    // All done! Translate the indices back into proper `G::NodeId`s.

    debug_assert!(!dominators.iter().any(|&dom| dom == UNDEFINED));

    Dominators {
        root,
        dominators: dominators
            .into_iter()
            .enumerate()
            .map(|(idx, dom_idx)| (post_order[idx], post_order[dom_idx]))
            .collect(),
    }
}

fn intersect(dominators: &[usize], mut finger1: usize, mut finger2: usize) -> usize {
    loop {
        match finger1.cmp(&finger2) {
            Ordering::Less => finger1 = dominators[finger1],
            Ordering::Greater => finger2 = dominators[finger2],
            Ordering::Equal => return finger1,
        }
    }
}

fn predecessor_sets_to_idx_vecs<N>(
    post_order: &[N],
    node_to_post_order_idx: &HashMap<N, usize>,
    mut predecessor_sets: HashMap<N, HashSet<N>>,
) -> Vec<Vec<usize>>
where
    N: Copy + Eq + Hash,
{
    post_order
        .iter()
        .map(|node| {
            predecessor_sets
                .remove(node)
                .map(|predecessors| {
                    predecessors
                        .into_iter()
                        .map(|p| *node_to_post_order_idx.get(&p).unwrap())
                        .collect()
                })
                .unwrap_or_else(Vec::new)
        })
        .collect()
}

fn simple_fast_post_order<G>(
    graph: G,
    root: G::NodeId,
) -> (Vec<G::NodeId>, HashMap<G::NodeId, HashSet<G::NodeId>>)
where
    G: IntoNeighbors + Visitable,
    <G as GraphBase>::NodeId: Eq + Hash,
{
    let mut post_order = vec![];
    let mut predecessor_sets = HashMap::new();

    for node in DfsPostOrder::new(graph, root).iter(graph) {
        post_order.push(node);

        for successor in graph.neighbors(node) {
            predecessor_sets
                .entry(successor)
                .or_insert_with(HashSet::new)
                .insert(node);
        }
    }

    (post_order, predecessor_sets)
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_iter_dominators() {
        let doms: Dominators<u32> = Dominators {
            root: 0,
            dominators: [(2, 1), (1, 0), (0, 0)].iter().cloned().collect(),
        };

        let all_doms: Vec<_> = doms.dominators(2).unwrap().collect();
        assert_eq!(vec![2, 1, 0], all_doms);

        assert_eq!(None::<()>, doms.dominators(99).map(|_| unreachable!()));

        let strict_doms: Vec<_> = doms.strict_dominators(2).unwrap().collect();
        assert_eq!(vec![1, 0], strict_doms);

        assert_eq!(
            None::<()>,
            doms.strict_dominators(99).map(|_| unreachable!())
        );
    }
}