1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
use std::collections::hash_map::Entry::{Occupied, Vacant};
use std::collections::{BinaryHeap, HashMap};
use std::hash::Hash;
use super::visit::{EdgeRef, GraphBase, IntoEdges, VisitMap, Visitable};
use crate::scored::MinScored;
use crate::algo::Measure;
pub fn astar<G, F, H, K, IsGoal>(
graph: G,
start: G::NodeId,
mut is_goal: IsGoal,
mut edge_cost: F,
mut estimate_cost: H,
) -> Option<(K, Vec<G::NodeId>)>
where
G: IntoEdges + Visitable,
IsGoal: FnMut(G::NodeId) -> bool,
G::NodeId: Eq + Hash,
F: FnMut(G::EdgeRef) -> K,
H: FnMut(G::NodeId) -> K,
K: Measure + Copy,
{
let mut visited = graph.visit_map();
let mut visit_next = BinaryHeap::new();
let mut scores = HashMap::new();
let mut path_tracker = PathTracker::<G>::new();
let zero_score = K::default();
scores.insert(start, zero_score);
visit_next.push(MinScored(estimate_cost(start), start));
while let Some(MinScored(_, node)) = visit_next.pop() {
if is_goal(node) {
let path = path_tracker.reconstruct_path_to(node);
let cost = scores[&node];
return Some((cost, path));
}
if !visited.visit(node) {
continue;
}
let node_score = scores[&node];
for edge in graph.edges(node) {
let next = edge.target();
if visited.is_visited(&next) {
continue;
}
let mut next_score = node_score + edge_cost(edge);
match scores.entry(next) {
Occupied(ent) => {
let old_score = *ent.get();
if next_score < old_score {
*ent.into_mut() = next_score;
path_tracker.set_predecessor(next, node);
} else {
next_score = old_score;
}
}
Vacant(ent) => {
ent.insert(next_score);
path_tracker.set_predecessor(next, node);
}
}
let next_estimate_score = next_score + estimate_cost(next);
visit_next.push(MinScored(next_estimate_score, next));
}
}
None
}
struct PathTracker<G>
where
G: GraphBase,
G::NodeId: Eq + Hash,
{
came_from: HashMap<G::NodeId, G::NodeId>,
}
impl<G> PathTracker<G>
where
G: GraphBase,
G::NodeId: Eq + Hash,
{
fn new() -> PathTracker<G> {
PathTracker {
came_from: HashMap::new(),
}
}
fn set_predecessor(&mut self, node: G::NodeId, previous: G::NodeId) {
self.came_from.insert(node, previous);
}
fn reconstruct_path_to(&self, last: G::NodeId) -> Vec<G::NodeId> {
let mut path = vec![last];
let mut current = last;
while let Some(&previous) = self.came_from.get(¤t) {
path.push(previous);
current = previous;
}
path.reverse();
path
}
}