Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
//! This module contains an implementation of alias method for sampling random
//! indices with probabilities proportional to a collection of weights.

use super::WeightedError;
#[cfg(not(feature = "std"))] use crate::alloc::vec;
#[cfg(not(feature = "std"))] use crate::alloc::vec::Vec;
use crate::distributions::uniform::SampleUniform;
use crate::distributions::Distribution;
use crate::distributions::Uniform;
use crate::Rng;
use core::fmt;
use core::iter::Sum;
use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign};

/// A distribution using weighted sampling to pick a discretely selected item.
///
/// Sampling a [`WeightedIndex<W>`] distribution returns the index of a randomly
/// selected element from the vector used to create the [`WeightedIndex<W>`].
/// The chance of a given element being picked is proportional to the value of
/// the element. The weights can have any type `W` for which a implementation of
/// [`Weight`] exists.
///
/// # Performance
///
/// Given that `n` is the number of items in the vector used to create an
/// [`WeightedIndex<W>`], [`WeightedIndex<W>`] will require `O(n)` amount of
/// memory. More specifically it takes up some constant amount of memory plus
/// the vector used to create it and a [`Vec<u32>`] with capacity `n`.
///
/// Time complexity for the creation of a [`WeightedIndex<W>`] is `O(n)`.
/// Sampling is `O(1)`, it makes a call to [`Uniform<u32>::sample`] and a call
/// to [`Uniform<W>::sample`].
///
/// # Example
///
/// ```
/// use rand::distributions::weighted::alias_method::WeightedIndex;
/// use rand::prelude::*;
///
/// let choices = vec!['a', 'b', 'c'];
/// let weights = vec![2, 1, 1];
/// let dist = WeightedIndex::new(weights).unwrap();
/// let mut rng = thread_rng();
/// for _ in 0..100 {
///     // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c'
///     println!("{}", choices[dist.sample(&mut rng)]);
/// }
///
/// let items = [('a', 0), ('b', 3), ('c', 7)];
/// let dist2 = WeightedIndex::new(items.iter().map(|item| item.1).collect()).unwrap();
/// for _ in 0..100 {
///     // 0% chance to print 'a', 30% chance to print 'b', 70% chance to print 'c'
///     println!("{}", items[dist2.sample(&mut rng)].0);
/// }
/// ```
///
/// [`WeightedIndex<W>`]: crate::distributions::weighted::alias_method::WeightedIndex
/// [`Weight`]: crate::distributions::weighted::alias_method::Weight
/// [`Vec<u32>`]: Vec
/// [`Uniform<u32>::sample`]: Distribution::sample
/// [`Uniform<W>::sample`]: Distribution::sample
pub struct WeightedIndex<W: Weight> {
    aliases: Vec<u32>,
    no_alias_odds: Vec<W>,
    uniform_index: Uniform<u32>,
    uniform_within_weight_sum: Uniform<W>,
}

impl<W: Weight> WeightedIndex<W> {
    /// Creates a new [`WeightedIndex`].
    ///
    /// Returns an error if:
    /// - The vector is empty.
    /// - The vector is longer than `u32::MAX`.
    /// - For any weight `w`: `w < 0` or `w > max` where `max = W::MAX /
    ///   weights.len()`.
    /// - The sum of weights is zero.
    pub fn new(weights: Vec<W>) -> Result<Self, WeightedError> {
        let n = weights.len();
        if n == 0 {
            return Err(WeightedError::NoItem);
        } else if n > ::core::u32::MAX as usize {
            return Err(WeightedError::TooMany);
        }
        let n = n as u32;

        let max_weight_size = W::try_from_u32_lossy(n)
            .map(|n| W::MAX / n)
            .unwrap_or(W::ZERO);
        if !weights
            .iter()
            .all(|&w| W::ZERO <= w && w <= max_weight_size)
        {
            return Err(WeightedError::InvalidWeight);
        }

        // The sum of weights will represent 100% of no alias odds.
        let weight_sum = Weight::sum(weights.as_slice());
        // Prevent floating point overflow due to rounding errors.
        let weight_sum = if weight_sum > W::MAX {
            W::MAX
        } else {
            weight_sum
        };
        if weight_sum == W::ZERO {
            return Err(WeightedError::AllWeightsZero);
        }

        // `weight_sum` would have been zero if `try_from_lossy` causes an error here.
        let n_converted = W::try_from_u32_lossy(n).unwrap();

        let mut no_alias_odds = weights;
        for odds in no_alias_odds.iter_mut() {
            *odds *= n_converted;
            // Prevent floating point overflow due to rounding errors.
            *odds = if *odds > W::MAX { W::MAX } else { *odds };
        }

        /// This struct is designed to contain three data structures at once,
        /// sharing the same memory. More precisely it contains two linked lists
        /// and an alias map, which will be the output of this method. To keep
        /// the three data structures from getting in each other's way, it must
        /// be ensured that a single index is only ever in one of them at the
        /// same time.
        struct Aliases {
            aliases: Vec<u32>,
            smalls_head: u32,
            bigs_head: u32,
        }

        impl Aliases {
            fn new(size: u32) -> Self {
                Aliases {
                    aliases: vec![0; size as usize],
                    smalls_head: ::core::u32::MAX,
                    bigs_head: ::core::u32::MAX,
                }
            }

            fn push_small(&mut self, idx: u32) {
                self.aliases[idx as usize] = self.smalls_head;
                self.smalls_head = idx;
            }

            fn push_big(&mut self, idx: u32) {
                self.aliases[idx as usize] = self.bigs_head;
                self.bigs_head = idx;
            }

            fn pop_small(&mut self) -> u32 {
                let popped = self.smalls_head;
                self.smalls_head = self.aliases[popped as usize];
                popped
            }

            fn pop_big(&mut self) -> u32 {
                let popped = self.bigs_head;
                self.bigs_head = self.aliases[popped as usize];
                popped
            }

            fn smalls_is_empty(&self) -> bool {
                self.smalls_head == ::core::u32::MAX
            }

            fn bigs_is_empty(&self) -> bool {
                self.bigs_head == ::core::u32::MAX
            }

            fn set_alias(&mut self, idx: u32, alias: u32) {
                self.aliases[idx as usize] = alias;
            }
        }

        let mut aliases = Aliases::new(n);

        // Split indices into those with small weights and those with big weights.
        for (index, &odds) in no_alias_odds.iter().enumerate() {
            if odds < weight_sum {
                aliases.push_small(index as u32);
            } else {
                aliases.push_big(index as u32);
            }
        }

        // Build the alias map by finding an alias with big weight for each index with
        // small weight.
        while !aliases.smalls_is_empty() && !aliases.bigs_is_empty() {
            let s = aliases.pop_small();
            let b = aliases.pop_big();

            aliases.set_alias(s, b);
            no_alias_odds[b as usize] =
                no_alias_odds[b as usize] - weight_sum + no_alias_odds[s as usize];

            if no_alias_odds[b as usize] < weight_sum {
                aliases.push_small(b);
            } else {
                aliases.push_big(b);
            }
        }

        // The remaining indices should have no alias odds of about 100%. This is due to
        // numeric accuracy. Otherwise they would be exactly 100%.
        while !aliases.smalls_is_empty() {
            no_alias_odds[aliases.pop_small() as usize] = weight_sum;
        }
        while !aliases.bigs_is_empty() {
            no_alias_odds[aliases.pop_big() as usize] = weight_sum;
        }

        // Prepare distributions for sampling. Creating them beforehand improves
        // sampling performance.
        let uniform_index = Uniform::new(0, n);
        let uniform_within_weight_sum = Uniform::new(W::ZERO, weight_sum);

        Ok(Self {
            aliases: aliases.aliases,
            no_alias_odds,
            uniform_index,
            uniform_within_weight_sum,
        })
    }
}

impl<W: Weight> Distribution<usize> for WeightedIndex<W> {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize {
        let candidate = rng.sample(self.uniform_index);
        if rng.sample(&self.uniform_within_weight_sum) < self.no_alias_odds[candidate as usize] {
            candidate as usize
        } else {
            self.aliases[candidate as usize] as usize
        }
    }
}

impl<W: Weight> fmt::Debug for WeightedIndex<W>
where
    W: fmt::Debug,
    Uniform<W>: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("WeightedIndex")
            .field("aliases", &self.aliases)
            .field("no_alias_odds", &self.no_alias_odds)
            .field("uniform_index", &self.uniform_index)
            .field("uniform_within_weight_sum", &self.uniform_within_weight_sum)
            .finish()
    }
}

impl<W: Weight> Clone for WeightedIndex<W>
where Uniform<W>: Clone
{
    fn clone(&self) -> Self {
        Self {
            aliases: self.aliases.clone(),
            no_alias_odds: self.no_alias_odds.clone(),
            uniform_index: self.uniform_index.clone(),
            uniform_within_weight_sum: self.uniform_within_weight_sum.clone(),
        }
    }
}

/// Trait that must be implemented for weights, that are used with
/// [`WeightedIndex`]. Currently no guarantees on the correctness of
/// [`WeightedIndex`] are given for custom implementations of this trait.
pub trait Weight:
    Sized
    + Copy
    + SampleUniform
    + PartialOrd
    + Add<Output = Self>
    + AddAssign
    + Sub<Output = Self>
    + SubAssign
    + Mul<Output = Self>
    + MulAssign
    + Div<Output = Self>
    + DivAssign
    + Sum
{
    /// Maximum number representable by `Self`.
    const MAX: Self;

    /// Element of `Self` equivalent to 0.
    const ZERO: Self;

    /// Produce an instance of `Self` from a `u32` value, or return `None` if
    /// out of range. Loss of precision (where `Self` is a floating point type)
    /// is acceptable.
    fn try_from_u32_lossy(n: u32) -> Option<Self>;

    /// Sums all values in slice `values`.
    fn sum(values: &[Self]) -> Self {
        values.iter().map(|x| *x).sum()
    }
}

macro_rules! impl_weight_for_float {
    ($T: ident) => {
        impl Weight for $T {
            const MAX: Self = ::core::$T::MAX;
            const ZERO: Self = 0.0;

            fn try_from_u32_lossy(n: u32) -> Option<Self> {
                Some(n as $T)
            }

            fn sum(values: &[Self]) -> Self {
                pairwise_sum(values)
            }
        }
    };
}

/// In comparison to naive accumulation, the pairwise sum algorithm reduces
/// rounding errors when there are many floating point values.
fn pairwise_sum<T: Weight>(values: &[T]) -> T {
    if values.len() <= 32 {
        values.iter().map(|x| *x).sum()
    } else {
        let mid = values.len() / 2;
        let (a, b) = values.split_at(mid);
        pairwise_sum(a) + pairwise_sum(b)
    }
}

macro_rules! impl_weight_for_int {
    ($T: ident) => {
        impl Weight for $T {
            const MAX: Self = ::core::$T::MAX;
            const ZERO: Self = 0;

            fn try_from_u32_lossy(n: u32) -> Option<Self> {
                let n_converted = n as Self;
                if n_converted >= Self::ZERO && n_converted as u32 == n {
                    Some(n_converted)
                } else {
                    None
                }
            }
        }
    };
}

impl_weight_for_float!(f64);
impl_weight_for_float!(f32);
impl_weight_for_int!(usize);
#[cfg(not(target_os = "emscripten"))]
impl_weight_for_int!(u128);
impl_weight_for_int!(u64);
impl_weight_for_int!(u32);
impl_weight_for_int!(u16);
impl_weight_for_int!(u8);
impl_weight_for_int!(isize);
#[cfg(not(target_os = "emscripten"))]
impl_weight_for_int!(i128);
impl_weight_for_int!(i64);
impl_weight_for_int!(i32);
impl_weight_for_int!(i16);
impl_weight_for_int!(i8);

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_weighted_index_f32() {
        test_weighted_index(f32::into);

        // Floating point special cases
        assert_eq!(
            WeightedIndex::new(vec![::core::f32::INFINITY]).unwrap_err(),
            WeightedError::InvalidWeight
        );
        assert_eq!(
            WeightedIndex::new(vec![-0_f32]).unwrap_err(),
            WeightedError::AllWeightsZero
        );
        assert_eq!(
            WeightedIndex::new(vec![-1_f32]).unwrap_err(),
            WeightedError::InvalidWeight
        );
        assert_eq!(
            WeightedIndex::new(vec![-::core::f32::INFINITY]).unwrap_err(),
            WeightedError::InvalidWeight
        );
        assert_eq!(
            WeightedIndex::new(vec![::core::f32::NAN]).unwrap_err(),
            WeightedError::InvalidWeight
        );
    }

    #[cfg(not(target_os = "emscripten"))]
    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_weighted_index_u128() {
        test_weighted_index(|x: u128| x as f64);
    }

    #[cfg(all(rustc_1_26, not(target_os = "emscripten")))]
    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_weighted_index_i128() {
        test_weighted_index(|x: i128| x as f64);

        // Signed integer special cases
        assert_eq!(
            WeightedIndex::new(vec![-1_i128]).unwrap_err(),
            WeightedError::InvalidWeight
        );
        assert_eq!(
            WeightedIndex::new(vec![::core::i128::MIN]).unwrap_err(),
            WeightedError::InvalidWeight
        );
    }

    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_weighted_index_u8() {
        test_weighted_index(u8::into);
    }

    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_weighted_index_i8() {
        test_weighted_index(i8::into);

        // Signed integer special cases
        assert_eq!(
            WeightedIndex::new(vec![-1_i8]).unwrap_err(),
            WeightedError::InvalidWeight
        );
        assert_eq!(
            WeightedIndex::new(vec![::core::i8::MIN]).unwrap_err(),
            WeightedError::InvalidWeight
        );
    }

    fn test_weighted_index<W: Weight, F: Fn(W) -> f64>(w_to_f64: F)
    where WeightedIndex<W>: fmt::Debug {
        const NUM_WEIGHTS: u32 = 10;
        const ZERO_WEIGHT_INDEX: u32 = 3;
        const NUM_SAMPLES: u32 = 15000;
        let mut rng = crate::test::rng(0x9c9fa0b0580a7031);

        let weights = {
            let mut weights = Vec::with_capacity(NUM_WEIGHTS as usize);
            let random_weight_distribution = crate::distributions::Uniform::new_inclusive(
                W::ZERO,
                W::MAX / W::try_from_u32_lossy(NUM_WEIGHTS).unwrap(),
            );
            for _ in 0..NUM_WEIGHTS {
                weights.push(rng.sample(&random_weight_distribution));
            }
            weights[ZERO_WEIGHT_INDEX as usize] = W::ZERO;
            weights
        };
        let weight_sum = weights.iter().map(|w| *w).sum::<W>();
        let expected_counts = weights
            .iter()
            .map(|&w| w_to_f64(w) / w_to_f64(weight_sum) * NUM_SAMPLES as f64)
            .collect::<Vec<f64>>();
        let weight_distribution = WeightedIndex::new(weights).unwrap();

        let mut counts = vec![0; NUM_WEIGHTS as usize];
        for _ in 0..NUM_SAMPLES {
            counts[rng.sample(&weight_distribution)] += 1;
        }

        assert_eq!(counts[ZERO_WEIGHT_INDEX as usize], 0);
        for (count, expected_count) in counts.into_iter().zip(expected_counts) {
            let difference = (count as f64 - expected_count).abs();
            let max_allowed_difference = NUM_SAMPLES as f64 / NUM_WEIGHTS as f64 * 0.1;
            assert!(difference <= max_allowed_difference);
        }

        assert_eq!(
            WeightedIndex::<W>::new(vec![]).unwrap_err(),
            WeightedError::NoItem
        );
        assert_eq!(
            WeightedIndex::new(vec![W::ZERO]).unwrap_err(),
            WeightedError::AllWeightsZero
        );
        assert_eq!(
            WeightedIndex::new(vec![W::MAX, W::MAX]).unwrap_err(),
            WeightedError::InvalidWeight
        );
    }

    #[test]
    fn value_stability() {
        fn test_samples<W: Weight>(weights: Vec<W>, buf: &mut [usize], expected: &[usize]) {
            assert_eq!(buf.len(), expected.len());
            let distr = WeightedIndex::new(weights).unwrap();
            let mut rng = crate::test::rng(0x9c9fa0b0580a7031);
            for r in buf.iter_mut() {
                *r = rng.sample(&distr);
            }
            assert_eq!(buf, expected);
        }

        let mut buf = [0; 10];
        test_samples(vec![1i32, 1, 1, 1, 1, 1, 1, 1, 1], &mut buf, &[
            6, 5, 7, 5, 8, 7, 6, 2, 3, 7,
        ]);
        test_samples(vec![0.7f32, 0.1, 0.1, 0.1], &mut buf, &[
            2, 0, 0, 0, 0, 0, 0, 0, 1, 3,
        ]);
        test_samples(vec![1.0f64, 0.999, 0.998, 0.997], &mut buf, &[
            2, 1, 2, 3, 2, 1, 3, 2, 1, 1,
        ]);
    }
}