Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
// Copyright 2019 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

#![doc(
    html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
    html_favicon_url = "https://www.rust-lang.org/favicon.ico",
    html_root_url = "https://rust-random.github.io/rand/"
)]
#![deny(missing_docs)]
#![deny(missing_debug_implementations)]
#![allow(
    clippy::excessive_precision,
    clippy::float_cmp,
    clippy::unreadable_literal
)]
#![allow(clippy::neg_cmp_op_on_partial_ord)] // suggested fix too verbose
#![no_std]

//! Generating random samples from probability distributions.
//!
//! ## Re-exports
//!
//! This crate is a super-set of the [`rand::distributions`] module. See the
//! [`rand::distributions`] module documentation for an overview of the core
//! [`Distribution`] trait and implementations.
//!
//! The following are re-exported:
//!
//! - The [`Distribution`] trait and [`DistIter`] helper type
//! - The [`Standard`], [`Alphanumeric`], [`Uniform`], [`OpenClosed01`],
//! [`Open01`], [`Bernoulli`], and [`WeightedIndex`] distributions
//!
//! ## Distributions
//!
//! This crate provides the following probability distributions:
//!
//! - Related to real-valued quantities that grow linearly
//!   (e.g. errors, offsets):
//!   - [`Normal`] distribution, and [`StandardNormal`] as a primitive
//!   - [`Cauchy`] distribution
//! - Related to Bernoulli trials (yes/no events, with a given probability):
//!   - [`Binomial`] distribution
//! - Related to positive real-valued quantities that grow exponentially
//!   (e.g. prices, incomes, populations):
//!   - [`LogNormal`] distribution
//! - Related to the occurrence of independent events at a given rate:
//!   - [`Pareto`] distribution
//!   - [`Poisson`] distribution
//!   - [`Exp`]onential distribution, and [`Exp1`] as a primitive
//!   - [`Weibull`] distribution
//! - Gamma and derived distributions:
//!   - [`Gamma`] distribution
//!   - [`ChiSquared`] distribution
//!   - [`StudentT`] distribution
//!   - [`FisherF`] distribution
//! - Triangular distribution:
//!   - [`Beta`] distribution
//!   - [`Triangular`] distribution
//! - Multivariate probability distributions
//!   - [`Dirichlet`] distribution
//!   - [`UnitSphere`] distribution
//!   - [`UnitBall`] distribution
//!   - [`UnitCircle`] distribution
//!   - [`UnitDisc`] distribution
//! - Misc. distributions
//!   - [`InverseGaussian`] distribution
//!   - [`NormalInverseGaussian`] distribution

#[cfg(all(feature = "alloc", not(feature = "std")))]
extern crate alloc;

#[cfg(feature = "std")]
extern crate std;
// TODO: remove on MSRV bump to 1.36
#[cfg(feature = "std")]
extern crate std as alloc;

pub use rand::distributions::{
    uniform, Alphanumeric, Bernoulli, BernoulliError, DistIter, Distribution, Open01, OpenClosed01,
    Standard, Uniform,
};

pub use self::binomial::{Binomial, Error as BinomialError};
pub use self::cauchy::{Cauchy, Error as CauchyError};
#[cfg(feature = "alloc")]
pub use self::dirichlet::{Dirichlet, Error as DirichletError};
pub use self::exponential::{Error as ExpError, Exp, Exp1};
pub use self::gamma::{
    Beta, BetaError, ChiSquared, ChiSquaredError, Error as GammaError, FisherF, FisherFError,
    Gamma, StudentT,
};
pub use self::inverse_gaussian::{InverseGaussian, Error as InverseGaussianError};
pub use self::normal::{Error as NormalError, LogNormal, Normal, StandardNormal};
pub use self::normal_inverse_gaussian::{NormalInverseGaussian, Error as NormalInverseGaussianError};
pub use self::pareto::{Error as ParetoError, Pareto};
pub use self::pert::{Pert, PertError};
pub use self::poisson::{Error as PoissonError, Poisson};
pub use self::triangular::{Triangular, TriangularError};
pub use self::unit_ball::UnitBall;
pub use self::unit_circle::UnitCircle;
pub use self::unit_disc::UnitDisc;
pub use self::unit_sphere::UnitSphere;
pub use self::weibull::{Error as WeibullError, Weibull};
#[cfg(feature = "alloc")]
pub use rand::distributions::weighted::{WeightedError, WeightedIndex};
#[cfg(feature = "alloc")]
pub use weighted_alias::WeightedAliasIndex;

pub use num_traits;

#[cfg(feature = "alloc")]
pub mod weighted_alias;

mod binomial;
mod cauchy;
mod dirichlet;
mod exponential;
mod gamma;
mod inverse_gaussian;
mod normal;
mod normal_inverse_gaussian;
mod pareto;
mod pert;
mod poisson;
mod triangular;
mod unit_ball;
mod unit_circle;
mod unit_disc;
mod unit_sphere;
mod utils;
mod weibull;
mod ziggurat_tables;

#[cfg(test)]
mod test {
    // Notes on testing
    //
    // Testing random number distributions correctly is hard. The following
    // testing is desired:
    //
    // - Construction: test initialisation with a few valid parameter sets.
    // - Erroneous usage: test that incorrect usage generates an error.
    // - Vector: test that usage with fixed inputs (including RNG) generates a
    //   fixed output sequence on all platforms.
    // - Correctness at fixed points (optional): using a specific mock RNG,
    //   check that specific values are sampled (e.g. end-points and median of
    //   distribution).
    // - Correctness of PDF (extra): generate a histogram of samples within a
    //   certain range, and check this approximates the PDF. These tests are
    //   expected to be expensive, and should be behind a feature-gate.
    //
    // TODO: Vector and correctness tests are largely absent so far.
    // NOTE: Some distributions have tests checking only that samples can be
    // generated. This is redundant with vector and correctness tests.

    /// Construct a deterministic RNG with the given seed
    pub fn rng(seed: u64) -> impl rand::RngCore {
        // For tests, we want a statistically good, fast, reproducible RNG.
        // PCG32 will do fine, and will be easy to embed if we ever need to.
        const INC: u64 = 11634580027462260723;
        rand_pcg::Pcg32::new(seed, INC)
    }
}