1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
// Copyright 2019 Developers of the Rand project. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![doc( html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png", html_favicon_url = "https://www.rust-lang.org/favicon.ico", html_root_url = "https://rust-random.github.io/rand/" )] #![deny(missing_docs)] #![deny(missing_debug_implementations)] #![allow( clippy::excessive_precision, clippy::float_cmp, clippy::unreadable_literal )] #![allow(clippy::neg_cmp_op_on_partial_ord)] // suggested fix too verbose #![no_std] //! Generating random samples from probability distributions. //! //! ## Re-exports //! //! This crate is a super-set of the [`rand::distributions`] module. See the //! [`rand::distributions`] module documentation for an overview of the core //! [`Distribution`] trait and implementations. //! //! The following are re-exported: //! //! - The [`Distribution`] trait and [`DistIter`] helper type //! - The [`Standard`], [`Alphanumeric`], [`Uniform`], [`OpenClosed01`], //! [`Open01`], [`Bernoulli`], and [`WeightedIndex`] distributions //! //! ## Distributions //! //! This crate provides the following probability distributions: //! //! - Related to real-valued quantities that grow linearly //! (e.g. errors, offsets): //! - [`Normal`] distribution, and [`StandardNormal`] as a primitive //! - [`Cauchy`] distribution //! - Related to Bernoulli trials (yes/no events, with a given probability): //! - [`Binomial`] distribution //! - Related to positive real-valued quantities that grow exponentially //! (e.g. prices, incomes, populations): //! - [`LogNormal`] distribution //! - Related to the occurrence of independent events at a given rate: //! - [`Pareto`] distribution //! - [`Poisson`] distribution //! - [`Exp`]onential distribution, and [`Exp1`] as a primitive //! - [`Weibull`] distribution //! - Gamma and derived distributions: //! - [`Gamma`] distribution //! - [`ChiSquared`] distribution //! - [`StudentT`] distribution //! - [`FisherF`] distribution //! - Triangular distribution: //! - [`Beta`] distribution //! - [`Triangular`] distribution //! - Multivariate probability distributions //! - [`Dirichlet`] distribution //! - [`UnitSphere`] distribution //! - [`UnitBall`] distribution //! - [`UnitCircle`] distribution //! - [`UnitDisc`] distribution //! - Misc. distributions //! - [`InverseGaussian`] distribution //! - [`NormalInverseGaussian`] distribution #[cfg(all(feature = "alloc", not(feature = "std")))] extern crate alloc; #[cfg(feature = "std")] extern crate std; // TODO: remove on MSRV bump to 1.36 #[cfg(feature = "std")] extern crate std as alloc; pub use rand::distributions::{ uniform, Alphanumeric, Bernoulli, BernoulliError, DistIter, Distribution, Open01, OpenClosed01, Standard, Uniform, }; pub use self::binomial::{Binomial, Error as BinomialError}; pub use self::cauchy::{Cauchy, Error as CauchyError}; #[cfg(feature = "alloc")] pub use self::dirichlet::{Dirichlet, Error as DirichletError}; pub use self::exponential::{Error as ExpError, Exp, Exp1}; pub use self::gamma::{ Beta, BetaError, ChiSquared, ChiSquaredError, Error as GammaError, FisherF, FisherFError, Gamma, StudentT, }; pub use self::inverse_gaussian::{InverseGaussian, Error as InverseGaussianError}; pub use self::normal::{Error as NormalError, LogNormal, Normal, StandardNormal}; pub use self::normal_inverse_gaussian::{NormalInverseGaussian, Error as NormalInverseGaussianError}; pub use self::pareto::{Error as ParetoError, Pareto}; pub use self::pert::{Pert, PertError}; pub use self::poisson::{Error as PoissonError, Poisson}; pub use self::triangular::{Triangular, TriangularError}; pub use self::unit_ball::UnitBall; pub use self::unit_circle::UnitCircle; pub use self::unit_disc::UnitDisc; pub use self::unit_sphere::UnitSphere; pub use self::weibull::{Error as WeibullError, Weibull}; #[cfg(feature = "alloc")] pub use rand::distributions::weighted::{WeightedError, WeightedIndex}; #[cfg(feature = "alloc")] pub use weighted_alias::WeightedAliasIndex; pub use num_traits; #[cfg(feature = "alloc")] pub mod weighted_alias; mod binomial; mod cauchy; mod dirichlet; mod exponential; mod gamma; mod inverse_gaussian; mod normal; mod normal_inverse_gaussian; mod pareto; mod pert; mod poisson; mod triangular; mod unit_ball; mod unit_circle; mod unit_disc; mod unit_sphere; mod utils; mod weibull; mod ziggurat_tables; #[cfg(test)] mod test { // Notes on testing // // Testing random number distributions correctly is hard. The following // testing is desired: // // - Construction: test initialisation with a few valid parameter sets. // - Erroneous usage: test that incorrect usage generates an error. // - Vector: test that usage with fixed inputs (including RNG) generates a // fixed output sequence on all platforms. // - Correctness at fixed points (optional): using a specific mock RNG, // check that specific values are sampled (e.g. end-points and median of // distribution). // - Correctness of PDF (extra): generate a histogram of samples within a // certain range, and check this approximates the PDF. These tests are // expected to be expensive, and should be behind a feature-gate. // // TODO: Vector and correctness tests are largely absent so far. // NOTE: Some distributions have tests checking only that samples can be // generated. This is redundant with vector and correctness tests. /// Construct a deterministic RNG with the given seed pub fn rng(seed: u64) -> impl rand::RngCore { // For tests, we want a statistically good, fast, reproducible RNG. // PCG32 will do fine, and will be easy to embed if we ever need to. const INC: u64 = 11634580027462260723; rand_pcg::Pcg32::new(seed, INC) } }