Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#![doc(html_favicon_url = "https://rin.rs/favicon.ico")]
/*!
# Introduction

## Installation

In order to use rin you'll need to install rust first:
https://www.rust-lang.org

Once installed you can install rin's extension to cargo
running:
```sh
cargo install cargo-rin
```

To update to a new version later you can run:
```sh
cargo install --force cargo-rin
```

You can now create new rin projects by running from a
console:
```sh
cargo rin new project_path
```

Which will create a default empty project. For more options run
```sh
cargo rin --help
```

# Basic example

In order to create a basic example we need to pass the `--no-ecs` parameter to the cargo rin tool:

```sh
cargo rin new --no-ecs basic_example
```

After creating a new project you'll end up with something that should look like:

```rust
struct App{

}

impl App{
    pub fn new(gl: &gl::Renderer, window: &mut window::Window) -> App{
        App{}
    }
}

impl ApplicationCallbacks for App{
    fn update(&mut self, delta: f64, gl: &gl::Renderer, window: &mut window::Window){

    }

    fn draw(&mut self, gl: &gl::Renderer, window: &window::Window){
        gl.clear_color(&BLACK);
        gl.clear_depth();
        let gl = gl.with(Mvp::ortho_top_left(window.viewport()));

    }

    fn key_pressed(&mut self, key: window::Key, mods: window::KeyModifiers, repeat: bool){

    }
}
```

If you've used other creative frameworks the above should result
familiar with some differences mostly comming from rust's own syntax.

The most important parts in this template are:

- A `new` function where you can initialize anything that you'll
use across your program.
- An `update` function where you can update all the attributes
that need updating like for example animations. The update funciton
in rin receives a `delta` which is the time that the last frame took
in seconds. This is useful to do time based animation. It also receives
a renderer and a window. You usually won't use the renderer in the update
function but sometimes it can be useful. The window can be used to query it's
properties, like it's width, height...
- A `draw` function. This is where you will usually draw things to
the screen. In `draw` you usually use the renderer, called `gl`. In rin
to draw you usually call a function on the renderer. For example:

```rust
gl.draw(&self.geometry);
```
- Callbacks to attend events from mouse, keyboard and others, like `key_pressed`.

## Scene template

The main way to use rin is through it's scene module which provides an ECS (Entity Component System)
or data driven programming framework which works in a very different way to the examples above. Working
with the scene module implies a more declarative style in which the data we create is managed by
the system for a lot of basic tasks like rendering.

For example using the non ECS approach, to draw a geometry we usually create a mesh, a material
and then in the draw function we explicitly call draw on it. We might even put that mesh
on a vao in GPU memory to optimize drawing.

When using the scene module we first create a scene object and through that scene create a model
with a geometry and material. Also using the scene we would create a light and a camera. From there
on the system will draw that object without any explicit draw call. The scene holds those components
and we don't usually care about the details of how they are drawn to the screen. Since the scene
handles all the objects, that gives it a much better opportunity for optimization.

In general when working with bigger applications particularly with 3D worlds it's highly recommended
to use the scene module rather than trying than an imperative method and indeed the most advanced
3D features like PBR materials, lights or shadows are only supported when using a scene.
Apart from performance reasons, Rust ownership model makes it easier to work with the ECS
architecture that the scene module uses, than using object oriented programming when there's many
objects that would interact with each other in a traditional OO application.

Using the cargo rin tool we can create an application to use the ECS template:

```sh
cargo rin new scene_example
```

This is an example of the setup functions of a rin application that creates hundreds of spheres
reusing the geometry and material through the scene module:

```rust
use rin::color::consts::*;
use rin::graphics::{sphere_coords, Node, arcball_camera};
use rin::scene::Scene;
use rin::material::StandardMaterialBuilder;

fn create_entities(scene: &mut Scene){
    // Create a sphere geometry and register it in the scene so we can use it later.
    // as a return value we get it's entity id
    let sphere = sphere_texcoords(0.1, 20, 20);
    let sphere = scene.register_mesh(sphere);

    // Create a new material of with a red color
    let material = StandardMaterialBuilder::default()
        .color(RED)
        .roughness(0.9)
        .build();
    let material = scene.register_material("material", material);

    // Create multiple models using the previous material and geometry
    for y in (-60 .. 60).step_by(2){
        let fy = y as f32 / 10.;
        for x in (-100 .. 100).step_by(2){
            let fx = x as f32 / 10.;
            scene.add_model(&format!("sphere{}_{}", x,y))
                .geometry(sphere)
                .material(material)
                .transformation(pnt3(fx, fy, 0.))
                .build();
        }
    }

    let _light = scene.add_directional_light("DirLight")
        .transformation(Node::new_look_at(pnt3(3., 3., 3.), Pnt3::origin(), Vec3::y()))
        .build();

    // Add a camera to the scene
    let events_stream = scene.event_stream();
    let window_size = scene.viewport().size();
    let camera = arcball_camera::Builder::new(events_stream, window_size)
        .position(pnt3(0., 3., 3.))
        .look_at(Pnt3::origin())
        .build()
        .unwrap();
    scene.set_camera(camera);
}
```

To learn more about the scene module check it's own reference: [scene]

## Immediate renderer + ECS

In some cases we might want to use ECS but not the full scene. In that case we can create a new
application using the immediate parameter for cargo rin:

```sh
cargo rin new --immediate basic_example
```

An immediate renderer app looks like this:

```rust
pub fn setup(window: Window, gl: gl::Renderer<'static>, events: EventsPoll) -> Scene {
    let mut scene_builder = SceneBuilder::new(events);

    scene_builder.add_update_system(update);

    let renderer = ImmediateRenderer{ renderer: gl, window, system: render};
    let mut scene = scene_builder.with_renderer(renderer).build();

    scene
}

#[update_system(name = "update")]
fn update(clock: &Clock, entities: Entities, resources: Resources) {

}

#[render_system(name = "renderer")]
fn render(
    gl: &gl::Renderer,
    viewport: Rect<i32>,
    entities: EntitiesThreadLocal,
    resources: ResourcesThreadLocal)
{
    let gl = gl.with_mvp(Mvp::ortho_top_left(viewport));
    gl.clear(&BLACK);
}
```

Where we have one or more update systems and usually a render one.

To learn more about the immediate renderer check it's own reference: [scene::immediate_renderer]

## Learning rust

For more information on using rust, you can check the rust book
[https://doc.rust-lang.org/book/second-edition/](https://doc.rust-lang.org/book/second-edition/)

## Examples

You can find examples on how to use rin at: https://...

## Book

The rin book has more in-depth documentation on how to use rin by showing examples for the main
functionalities: [https://rin.rs/book.thml](https://rin.rs/book.thml)


# API reference


*/

#[doc(inline)]
pub use rin_core::*;

#[cfg(feature = "dynamic_link")]
#[allow(unused_imports)]
use rin_dynamic;