Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
#![deny(warnings, missing_docs, missing_debug_implementations)]
#![doc(html_root_url = "https://docs.rs/slotmap/0.4.0")]
#![crate_name = "slotmap"]
#![cfg_attr(feature = "unstable", feature(untagged_unions, try_reserve))]

//! # slotmap
//!
//! This library provides a container with persistent unique keys to access
//! stored values, [`SlotMap`]. Upon insertion a key is returned that can be
//! used to later access or remove the values. Insertion, removal and access all
//! take O(1) time with low overhead. Great for storing collections of objects
//! that need stable, safe references but have no clear ownership otherwise,
//! such as game entities or graph nodes.
//!
//! The difference between a [`BTreeMap`] or [`HashMap`] and a slot map is
//! that the slot map generates and returns the key when inserting a value. A
//! key is always unique and will only refer to the value that was inserted.
//! A slot map's main purpose is to simply own things in a safe and efficient
//! manner.
//!
//! You can also create (multiple) secondary maps that can map the keys returned
//! by [`SlotMap`] to other values, to associate arbitrary data with objects
//! stored in slot maps, without hashing required - it's direct indexing under
//! the hood.
//!
//! # Examples
//!
//! ```
//! # use slotmap::*;
//! let mut sm = SlotMap::new();
//! let foo = sm.insert("foo");  // Key generated on insert.
//! let bar = sm.insert("bar");
//! assert_eq!(sm[foo], "foo");
//! assert_eq!(sm[bar], "bar");
//!
//! sm.remove(bar);
//! let reuse = sm.insert("reuse");  // Space from bar reused.
//! assert_eq!(sm.contains_key(bar), false);  // After deletion a key stays invalid.
//!
//! let mut sec = SecondaryMap::new();
//! sec.insert(foo, "noun");  // We provide the key for secondary maps.
//! sec.insert(reuse, "verb");
//!
//! for (key, val) in sm {
//!     println!("{} is a {}", val, sec[key]);
//! }
//! ```
//!
//! # Serialization through [`serde`]
//!
//! Both keys and the slot maps have full (de)seralization support through
//! the [`serde`] library. A key remains valid for a slot map even after one or
//! both have been serialized and deserialized! This makes storing or
//! transferring complicated referential structures and graphs a breeze. Care has
//! been taken such that deserializing keys and slot maps from untrusted sources
//! is safe. If you wish to use these features you must enable the `serde`
//! feature flag for `slotmap` in your `Cargo.toml`.
//!
//! ```text
//! slotmap = { version = "...", features = ["serde"] }
//! ```
//!
//! # Why not [`slab`]?
//!
//! Unlike [`slab`], the keys returned by [`SlotMap`] are versioned. This means
//! that once a key is removed, it stays removed, even if the physical storage
//! inside the slotmap is reused for new elements. The key is a
//! permanently unique<sup>*</sup> reference to the inserted value. Despite
//! supporting versioning, a [`SlotMap`] is not slower than [`slab`], by
//! internally using carefully checked unsafe code. A [`HopSlotMap`]
//! also provides faster iteration than [`slab`] does, and [`DenseSlotMap`] even
//! faster still. Additionally, at the time of writing [`slab`] does not support
//! serialization.
//!
//! # Performance characteristics and implementation details
//!
//! Insertion, access and deletion is all O(1) with low overhead by storing the
//! elements inside a [`Vec`]. Unlike references or indices into a vector,
//! unless you remove a key it is never invalidated. Behind the scenes each
//! slot in the vector is a `(value, version)` tuple. After insertion the
//! returned key also contains a version. Only when the stored version and
//! version in a key match is a key valid. This allows us to reuse space in the
//! vector after deletion without letting removed keys point to spurious new
//! elements. <sup>*</sup>After 2<sup>31</sup> deletions and insertions to the
//! same underlying slot the version wraps around and such a spurious reference
//! could potentially occur. It is incredibly unlikely however, and in all
//! circumstances is the behavior safe. A slot map can hold up to
//! 2<sup>32</sup> - 2 elements at a time.
//!
//! The memory usage for each slot in [`SlotMap`] is `4 + max(sizeof(T), 4)`
//! rounded up to the alignment of `T`. Similarly it is `4 + max(sizeof(T), 12)`
//! for [`HopSlotMap`]. [`DenseSlotMap`] has an overhead of 8 bytes per element
//! and 8 bytes per slot.
//!
//! # Choosing `SlotMap`, `HopSlotMap` or `DenseSlotMap`
//!
//! A [`SlotMap`] can never shrink the size of its underlying storage, because
//! for each storage slot it must remember what the latest stored version was,
//! even if the slot is empty now. This means that iteration can be slow as it
//! must iterate over potentially a lot of empty slots.
//!
//! [`HopSlotMap`] solves this by maintaining more information on
//! insertion/removal, allowing it to iterate only over filled slots by 'hopping
//! over' contiguous blocks of vacant slots. This can give it significantly
//! better iteration speed.  If you expect to iterate over all elements in a
//! [`SlotMap`] a lot, choose [`HopSlotMap`]. The downside is that insertion and
//! removal is roughly twice as slow. Random access is the same speed for both.
//!
//! [`DenseSlotMap`] goes even further and stores all elements on a contiguous
//! block of memory. It uses two indirects per random access; the slots contain
//! indices used to access the contiguous memory. This means random access is
//! slower than both [`SlotMap`] and [`HopSlotMap`], but iteration is
//! significantly faster. Finally, there is no trait requirement on the value
//! type of a [`DenseSlotMap`], see [`Slottable`] for more details.
//!
//! # Choosing `SecondaryMap` or `SparseSecondaryMap`
//!
//! You want to associate extra data with objects stored in a slot map, so you
//! use (multiple) secondary maps to map keys to that data.
//!
//! A [`SecondaryMap`] is simply a [`Vec`] of slots like slot map is, and
//! essentially provides all the same guarantees as [`SlotMap`] does for its
//! operations (with the exception that you provide the keys as produced by the
//! primary slot map). This does mean that even if you associate data to only
//! a single element from the primary slot map, you could need and have to
//! initialize as much memory as the original.
//!
//! A [`SparseSecondaryMap`] is like a [`HashMap`] from keys to objects, however
//! it automatically removes outdated keys for slots that had their space
//! reused. You should use this variant if you expect to store some associated
//! data for only a small portion of the primary slot map.
//!
//! # Custom key types
//!
//! If you have multiple slot maps it's an error to use the key of one slot map
//! on another slot map. The result is safe, but unspecified, and can not be
//! detected at runtime, so it can lead to a hard to find bug.
//!
//! To prevent this, slot maps allow you to specify what the type is of the key
//! they return, as long as that type implements the [`Key`] trait. To aid with
//! this, the [`new_key_type!`] macro is provided that builds such a type for
//! you. The resulting type is exactly like [`DefaultKey`]. So instead of simply
//! using `SlotMap<DefaultKey, Player>` you would use:
//!
//! ```
//! # use slotmap::*;
//! # #[derive(Copy, Clone)]
//! # struct Player;
//! new_key_type! { struct PlayerKey; }
//! let sm: SlotMap<PlayerKey, Player> = SlotMap::with_key();
//! ```
//!
//! [`Vec`]: https://doc.rust-lang.org/std/vec/struct.Vec.html
//! [`BTreeMap`]: https://doc.rust-lang.org/std/collections/struct.BTreeMap.html
//! [`HashMap`]: https://doc.rust-lang.org/std/collections/struct.HashMap.html
//! [`SlotMap`]: struct.SlotMap.html
//! [`HopSlotMap`]: hop/struct.HopSlotMap.html
//! [`DenseSlotMap`]: dense/struct.DenseSlotMap.html
//! [`SecondaryMap`]: secondary/struct.SecondaryMap.html
//! [`SparseSecondaryMap`]: sparse_secondary/struct.SparseSecondaryMap.html
//! [`Slottable`]: trait.Slottable.html
//! [`Key`]: trait.Key.html
//! [`new_key_type!`]: macro.new_key_type.html
//! [`serde`]: https://github.com/serde-rs/serde
//! [`slab`]: https://github.com/carllerche/slab
//! [`DefaultKey`]: struct.DefaultKey.html

#[cfg(feature = "serde")]
extern crate serde;

// So our macros can refer to these.
#[cfg(feature = "serde")]
#[doc(hidden)]
pub mod __impl {
    pub use serde::{Deserialize, Deserializer, Serialize, Serializer};
}

#[cfg(test)]
#[macro_use]
extern crate quickcheck;

#[cfg(test)]
extern crate serde_json;

pub(crate) mod normal;
pub use crate::normal::*;

pub mod dense;
pub use crate::dense::DenseSlotMap;

pub mod hop;
pub use crate::hop::HopSlotMap;

pub mod secondary;
pub use crate::secondary::SecondaryMap;

pub mod sparse_secondary;
pub use crate::sparse_secondary::SparseSecondaryMap;

use std::fmt::{self, Debug, Formatter};
use std::num::NonZeroU32;

/// A trait for items that can go in a [`SlotMap`] or [`HopSlotMap`]. Due to
/// current stable Rust restrictions a type must be [`Copy`] to be placed in one
/// of those slot maps. This restriction does not apply to [`DenseSlotMap`],
/// [`SecondaryMap`] or [`SparseSecondaryMap`]. It also does not apply if you
/// use nightly Rust and enable the `unstable` feature for `slotmap` by editing
/// your `Cargo.toml`:
///
/// ```text
/// slotmap = { version = "...", features = ["unstable"] }
/// ```
///
/// This trait should already be automatically implemented for any type that is
/// slottable.
///
/// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html
/// [`SecondaryMap`]: secondary/struct.SecondaryMap.html
/// [`SparseSecondaryMap`]: sparse_secondary/struct.SparseSecondaryMap.html
/// [`SlotMap`]: struct.SlotMap.html
/// [`HopSlotMap`]: hop/struct.HopSlotMap.html
/// [`DenseSlotMap`]: dense/struct.DenseSlotMap.html
#[cfg(not(feature = "unstable"))]
pub trait Slottable: Copy {}

/// A trait for items that can go in a [`SlotMap`] or [`HopSlotMap`]. Due to
/// current stable Rust restrictions a type must be [`Copy`] to be placed in one
/// of those slot maps. This restriction does not apply to [`DenseSlotMap`],
/// [`SecondaryMap`] or [`SparseSecondaryMap`]. It also does not apply if you
/// use nightly Rust and enable the `unstable` feature for `slotmap` by editing
/// your `Cargo.toml`:
///
/// ```text
/// slotmap = { version = "...", features = ["unstable"] }
/// ```
///
/// This trait should already be automatically implemented for any type that is
/// slottable.
///
/// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html
/// [`SecondaryMap`]: secondary/struct.SecondaryMap.html
/// [`SparseSecondaryMap`]: sparse_secondary/struct.SparseSecondaryMap.html
/// [`SlotMap`]: struct.SlotMap.html
/// [`HopSlotMap`]: hop/struct.HopSlotMap.html
/// [`DenseSlotMap`]: dense/struct.DenseSlotMap.html
#[cfg(feature = "unstable")]
pub trait Slottable {}

#[cfg(not(feature = "unstable"))]
impl<T: Copy> Slottable for T {}

#[cfg(feature = "unstable")]
impl<T> Slottable for T {}

/// The actual data stored in a [`Key`].
///
/// This implements `Ord` so keys can be stored in e.g. [`BTreeMap`], but the
/// order of keys is unspecified.
///
/// [`Key`]: trait.Key.html
/// [`BTreeMap`]: https://doc.rust-lang.org/std/collections/struct.BTreeMap.html
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct KeyData {
    idx: u32,
    version: NonZeroU32,
}

impl KeyData {
    fn new(idx: u32, version: u32) -> Self {
        Self {
            idx,
            version: NonZeroU32::new(version).expect("KeyData constructed with zero version"),
        }
    }

    fn null() -> Self {
        Self::new(std::u32::MAX, 1)
    }

    fn is_null(self) -> bool {
        self.idx == std::u32::MAX
    }

    /// Returns the key data as a 64-bit integer. No guarantees about its value
    /// are made other than that passing it to `from_ffi` will return a key
    /// equal to the original.
    ///
    /// With this you can easily pass slot map keys as opaque handles to foreign
    /// code. After you get them back you can confidently use them in your slot
    /// map without worrying about unsafe behavior as you would with passing and
    /// receiving back references or pointers.
    ///
    /// This is not a substitute for proper serialization, use [`serde`] for
    /// that. If you are not doing FFI, you almost surely do not need this
    /// function.
    ///
    /// [`serde`]: index.html#serialization-through-serde
    pub fn as_ffi(self) -> u64 {
        (u64::from(self.version.get()) << 32) | u64::from(self.idx)
    }

    /// Iff `value` is a value received from `k.as_ffi()`, returns a key equal
    /// to `k`. Otherwise the behavior is safe but unspecified.
    pub fn from_ffi(value: u64) -> Self {
        let idx = value & 0xffff_ffff;
        let version = (value >> 32) | 1; // Ensure version is odd.
        Self::new(idx as u32, version as u32)
    }
}

impl Debug for KeyData {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        write!(f, "{}v{}", self.idx, self.version.get())
    }
}

impl Default for KeyData {
    fn default() -> Self {
        Self::null()
    }
}

/// Key used to access stored values in a slot map.
///
/// Do not use a key from one slot map in another. The behavior is safe but
/// non-sensical (and might panic in case of out-of-bounds).
///
/// To prevent this, it is suggested to have a unique key type for each slot
/// map. The easiest way to do this is through [`new_key_type!`], which
/// makes a new type identical to [`DefaultKey`], just with a different name.
///
/// [`new_key_type!`]: macro.new_key_type.html
/// [`DefaultKey`]: struct.DefaultKey.html
pub trait Key: From<KeyData> + Into<KeyData> + Clone {
    /// Creates a new key that is always invalid and distinct from any non-null
    /// key. A null key can only be created through this method (or default
    /// initialization of keys made with [`new_key_type!`], which calls this
    /// method).
    ///
    /// A null key is always invalid, but an invalid key (that is, a key that
    /// has been removed from the slot map) does not become a null key. A null
    /// is safe to use with any safe method of any slot map instance.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slotmap::*;
    /// let mut sm = SlotMap::new();
    /// let k = sm.insert(42);
    /// let nk = DefaultKey::null();
    /// assert!(nk.is_null());
    /// assert!(k != nk);
    /// assert_eq!(sm.get(nk), None);
    /// ```
    ///
    /// [`new_key_type!`]: macro.new_key_type.html
    fn null() -> Self {
        KeyData::null().into()
    }

    /// Checks if a key is null. There is only a single null key, that is
    /// `a.is_null() && b.is_null()` implies `a == b`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slotmap::*;
    /// new_key_type! { struct MyKey; }
    /// let a = MyKey::null();
    /// let b = MyKey::default();
    /// assert_eq!(a, b);
    /// assert!(a.is_null());
    /// ```
    fn is_null(self) -> bool {
        self.into().is_null()
    }
}

/// A helper macro to conveniently create new key types. If you use a new key
/// type for each slot map you create you can entirely prevent using the wrong
/// key on the wrong slot map.
///
/// The type constructed by this macro is identical to [`DefaultKey`], just with
/// a different name.
///
/// [`DefaultKey`]: struct.DefaultKey.html
///
/// # Examples
///
/// ```
/// # extern crate slotmap;
/// # use slotmap::*;
/// new_key_type! {
///     struct EntityKey;
///
///     /// Key for the Player slot map.
///     pub struct PlayerKey;
/// }
///
/// fn main() {
///     let mut players = SlotMap::with_key();
///     let mut entities: SlotMap<EntityKey, (f64, f64)> = SlotMap::with_key();
///     let bob: PlayerKey = players.insert("bobby");
///     // Now this is a type error because entities.get expects an EntityKey:
///     // entities.get(bob);
/// }
/// ```
#[macro_export(local_inner_macros)]
macro_rules! new_key_type {
    ( $(#[$outer:meta])* $vis:vis struct $name:ident; $($rest:tt)* ) => {
        $(#[$outer])*
        #[derive(Copy, Clone, Default,
                 Eq, PartialEq, Ord, PartialOrd,
                 Hash, Debug)]
        #[repr(transparent)]
        $vis struct $name($crate::KeyData);

        impl From<$crate::KeyData> for $name {
            fn from(k: $crate::KeyData) -> Self {
                $name(k)
            }
        }

        impl From<$name> for $crate::KeyData {
            fn from(k: $name) -> Self {
                k.0
            }
        }

        impl $crate::Key for $name { }

        $crate::__serialize_key!($name);

        $crate::new_key_type!($($rest)*);
    };

    () => {}
}

#[cfg(feature = "serde")]
#[doc(hidden)]
#[macro_export]
macro_rules! __serialize_key {
    ( $name:ty ) => {
        impl $crate::__impl::Serialize for $name {
            fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
            where
                S: $crate::__impl::Serializer,
            {
                $crate::KeyData::from(*self).serialize(serializer)
            }
        }

        impl<'de> $crate::__impl::Deserialize<'de> for $name {
            fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
            where
                D: $crate::__impl::Deserializer<'de>,
            {
                let key_data: $crate::KeyData =
                    $crate::__impl::Deserialize::deserialize(deserializer)?;
                Ok(key_data.into())
            }
        }
    };
}

#[cfg(not(feature = "serde"))]
#[doc(hidden)]
#[macro_export]
macro_rules! __serialize_key {
    ( $name:ty ) => {};
}

new_key_type! {
    /// The default slot map key type.
    pub struct DefaultKey;
}

// Returns if a is an older version than b, taking into account wrapping of
// versions.
fn is_older_version(a: u32, b: u32) -> bool {
    let diff = a.wrapping_sub(b);
    diff >= (1 << 31)
}

// Serialization with serde.
#[cfg(feature = "serde")]
mod serialize {
    use super::*;
    use serde::{Deserialize, Deserializer, Serialize, Serializer};

    #[derive(Serialize, Deserialize)]
    pub struct SerKey {
        idx: u32,
        version: u32,
    }

    impl Serialize for KeyData {
        fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
        where
            S: Serializer,
        {
            let ser_key = SerKey {
                idx: self.idx,
                version: self.version.get(),
            };
            ser_key.serialize(serializer)
        }
    }

    impl<'de> Deserialize<'de> for KeyData {
        fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
        where
            D: Deserializer<'de>,
        {
            let mut ser_key: SerKey = Deserialize::deserialize(deserializer)?;

            // Ensure a.is_null() && b.is_null() implies a == b.
            if ser_key.idx == std::u32::MAX {
                ser_key.version = 1;
            }

            ser_key.version |= 1; // Ensure version is odd.
            Ok(Self::new(ser_key.idx, ser_key.version))
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn check_is_older_version() {
        let is_older = |a, b| is_older_version(a, b);
        assert!(!is_older(42, 42));
        assert!(is_older(0, 1));
        assert!(is_older(0, 1 << 31));
        assert!(!is_older(0, (1 << 31) + 1));
        assert!(is_older((-1i32) as u32, 0));
    }

    #[cfg(feature = "serde")]
    #[test]
    fn key_serde() {
        // Check round-trip through serde.
        let mut sm = SlotMap::new();
        let k = sm.insert(42);
        let ser = serde_json::to_string(&k).unwrap();
        let de: DefaultKey = serde_json::from_str(&ser).unwrap();
        assert_eq!(k, de);

        // Even if a malicious entity sends up even (unoccupied) versions in the
        // key, we make the version point to the occupied version.
        let malicious: KeyData = serde_json::from_str(&r#"{"idx":0,"version":4}"#).unwrap();
        assert_eq!(malicious.version.get(), 5);
    }
}