Struct nalgebra::linalg::Schur [−][src]
pub struct Schur<N: ComplexField, D: Dim> where
DefaultAllocator: Allocator<N, D, D>, { /* fields omitted */ }
Schur decomposition of a square matrix.
If this is a real matrix, this will be a RealField Schur decomposition.
Implementations
impl<N: ComplexField, D: Dim> Schur<N, D> where
D: DimSub<U1>,
DefaultAllocator: Allocator<N, D, DimDiff<D, U1>> + Allocator<N, DimDiff<D, U1>> + Allocator<N, D, D> + Allocator<N, D>,
[src]
impl<N: ComplexField, D: Dim> Schur<N, D> where
D: DimSub<U1>,
DefaultAllocator: Allocator<N, D, DimDiff<D, U1>> + Allocator<N, DimDiff<D, U1>> + Allocator<N, D, D> + Allocator<N, D>,
[src]pub fn new(m: MatrixN<N, D>) -> Self
[src]
Computes the Schur decomposition of a square matrix.
pub fn try_new(
m: MatrixN<N, D>,
eps: N::RealField,
max_niter: usize
) -> Option<Self>
[src]
m: MatrixN<N, D>,
eps: N::RealField,
max_niter: usize
) -> Option<Self>
Attempts to compute the Schur decomposition of a square matrix.
If only eigenvalues are needed, it is more efficient to call the matrix method
.eigenvalues()
instead.
Arguments
eps
− tolerance used to determine when a value converged to 0.max_niter
− maximum total number of iterations performed by the algorithm. If this number of iteration is exceeded,None
is returned. Ifniter == 0
, then the algorithm continues indefinitely until convergence.
pub fn unpack(self) -> (MatrixN<N, D>, MatrixN<N, D>)
[src]
Retrieves the unitary matrix Q
and the upper-quasitriangular matrix T
such that the
decomposed matrix equals Q * T * Q.transpose()
.
pub fn eigenvalues(&self) -> Option<VectorN<N, D>>
[src]
Computes the real eigenvalues of the decomposed matrix.
Return None
if some eigenvalues are complex.
pub fn complex_eigenvalues(&self) -> VectorN<NumComplex<N>, D> where
N: RealField,
DefaultAllocator: Allocator<NumComplex<N>, D>,
[src]
N: RealField,
DefaultAllocator: Allocator<NumComplex<N>, D>,
Computes the complex eigenvalues of the decomposed matrix.
Trait Implementations
impl<N: Clone + ComplexField, D: Clone + Dim> Clone for Schur<N, D> where
DefaultAllocator: Allocator<N, D, D>,
[src]
impl<N: Clone + ComplexField, D: Clone + Dim> Clone for Schur<N, D> where
DefaultAllocator: Allocator<N, D, D>,
[src]impl<N: Debug + ComplexField, D: Debug + Dim> Debug for Schur<N, D> where
DefaultAllocator: Allocator<N, D, D>,
[src]
impl<N: Debug + ComplexField, D: Debug + Dim> Debug for Schur<N, D> where
DefaultAllocator: Allocator<N, D, D>,
[src]impl<'de, N: ComplexField, D: Dim> Deserialize<'de> for Schur<N, D> where
DefaultAllocator: Allocator<N, D, D>,
DefaultAllocator: Allocator<N, D, D>,
MatrixN<N, D>: Deserialize<'de>,
[src]
impl<'de, N: ComplexField, D: Dim> Deserialize<'de> for Schur<N, D> where
DefaultAllocator: Allocator<N, D, D>,
DefaultAllocator: Allocator<N, D, D>,
MatrixN<N, D>: Deserialize<'de>,
[src]fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error> where
__D: Deserializer<'de>,
[src]
__D: Deserializer<'de>,
impl<N: ComplexField, D: Dim> Serialize for Schur<N, D> where
DefaultAllocator: Allocator<N, D, D>,
DefaultAllocator: Allocator<N, D, D>,
MatrixN<N, D>: Serialize,
[src]
impl<N: ComplexField, D: Dim> Serialize for Schur<N, D> where
DefaultAllocator: Allocator<N, D, D>,
DefaultAllocator: Allocator<N, D, D>,
MatrixN<N, D>: Serialize,
[src]impl<N: ComplexField, D: Dim> Copy for Schur<N, D> where
DefaultAllocator: Allocator<N, D, D>,
MatrixN<N, D>: Copy,
[src]
DefaultAllocator: Allocator<N, D, D>,
MatrixN<N, D>: Copy,
Auto Trait Implementations
impl<N, D> !RefUnwindSafe for Schur<N, D>
impl<N, D> !Send for Schur<N, D>
impl<N, D> !Sync for Schur<N, D>
impl<N, D> !Unpin for Schur<N, D>
impl<N, D> !UnwindSafe for Schur<N, D>
Blanket Implementations
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
[src]
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
[src]