Struct petgraph::csr::Csr [−][src]
Compressed Sparse Row (CSR
) is a sparse adjacency matrix graph.
CSR
is parameterized over:
- Associated data
N
for nodes andE
for edges, called weights. The associated data can be of arbitrary type. - Edge type
Ty
that determines whether the graph edges are directed or undirected. - Index type
Ix
, which determines the maximum size of the graph.
Using O(|E| + |V|) space.
Self loops are allowed, no parallel edges.
Fast iteration of the outgoing edges of a vertex.
Implementations
impl<N, E, Ty, Ix> Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType,
[src]
impl<N, E, Ty, Ix> Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType,
[src]impl<N, E, Ix> Csr<N, E, Directed, Ix> where
Ix: IndexType,
[src]
impl<N, E, Ix> Csr<N, E, Directed, Ix> where
Ix: IndexType,
[src]pub fn from_sorted_edges<Edge>(edges: &[Edge]) -> Result<Self, EdgesNotSorted> where
Edge: Clone + IntoWeightedEdge<E, NodeId = NodeIndex<Ix>>,
N: Default,
[src]
Edge: Clone + IntoWeightedEdge<E, NodeId = NodeIndex<Ix>>,
N: Default,
Create a new Csr
from a sorted sequence of edges
Edges must be sorted and unique, where the sort order is the default order for the pair (u, v) in Rust (u has priority).
Computes in O(|E| + |V|) time.
Example
use petgraph::csr::Csr; use petgraph::prelude::*; let graph = Csr::<(),()>::from_sorted_edges(&[ (0, 1), (0, 2), (1, 0), (1, 2), (1, 3), (2, 0), (3, 1), ]);
impl<N, E, Ty, Ix> Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType,
[src]
impl<N, E, Ty, Ix> Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType,
[src]pub fn node_count(&self) -> usize
[src]
pub fn edge_count(&self) -> usize
[src]
pub fn is_directed(&self) -> bool
[src]
pub fn clear_edges(&mut self)
[src]
Remove all edges
pub fn add_node(&mut self, weight: N) -> NodeIndex<Ix>
[src]
Adds a new node with the given weight, returning the corresponding node index.
pub fn add_edge(
&mut self,
a: NodeIndex<Ix>,
b: NodeIndex<Ix>,
weight: E
) -> bool where
E: Clone,
[src]
&mut self,
a: NodeIndex<Ix>,
b: NodeIndex<Ix>,
weight: E
) -> bool where
E: Clone,
Return true
if the edge was added
If you add all edges in row-major order, the time complexity is O(|V|·|E|) for the whole operation.
Panics if a
or b
are out of bounds.
pub fn contains_edge(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> bool
[src]
Computes in O(log |V|) time.
Panics if the node a
does not exist.
pub fn out_degree(&self, a: NodeIndex<Ix>) -> usize
[src]
Computes in O(1) time.
Panics if the node a
does not exist.
pub fn neighbors_slice(&self, a: NodeIndex<Ix>) -> &[NodeIndex<Ix>]
[src]
Computes in O(1) time.
Panics if the node a
does not exist.
pub fn edges_slice(&self, a: NodeIndex<Ix>) -> &[E]
[src]
Computes in O(1) time.
Panics if the node a
does not exist.
pub fn edges(&self, a: NodeIndex<Ix>) -> Edges<'_, E, Ty, Ix>ⓘ
[src]
Return an iterator of all edges of a
.
Directed
: Outgoing edges froma
.Undirected
: All edges connected toa
.
Panics if the node a
does not exist.
Iterator element type is EdgeReference<E, Ty, Ix>
.
Trait Implementations
impl<N: Clone, E: Clone, Ty, Ix: Clone> Clone for Csr<N, E, Ty, Ix>
[src]
impl<N: Clone, E: Clone, Ty, Ix: Clone> Clone for Csr<N, E, Ty, Ix>
[src]fn clone(&self) -> Self
[src]
pub fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl<N, E, Ty, Ix> Data for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType,
[src]
impl<N, E, Ty, Ix> Data for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType,
[src]type NodeWeight = N
type EdgeWeight = E
impl<'a, N, E, Ty, Ix> IntoEdgeReferences for &'a Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType,
[src]
impl<'a, N, E, Ty, Ix> IntoEdgeReferences for &'a Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType,
[src]type EdgeRef = EdgeReference<'a, E, Ty, Ix>
type EdgeReferences = EdgeReferences<'a, E, Ty, Ix>
fn edge_references(self) -> Self::EdgeReferences
[src]
impl<'a, N, E, Ty, Ix> IntoNeighbors for &'a Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType,
[src]
impl<'a, N, E, Ty, Ix> IntoNeighbors for &'a Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType,
[src]type Neighbors = Neighbors<'a, Ix>
fn neighbors(self, a: Self::NodeId) -> Self::Neighbors
[src]
Return an iterator of all neighbors of a
.
Directed
: Targets of outgoing edges froma
.Undirected
: Opposing endpoints of all edges connected toa
.
Panics if the node a
does not exist.
Iterator element type is NodeIndex<Ix>
.
impl<'a, N, E, Ty, Ix> IntoNodeIdentifiers for &'a Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType,
[src]
impl<'a, N, E, Ty, Ix> IntoNodeIdentifiers for &'a Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType,
[src]type NodeIdentifiers = NodeIdentifiers<Ix>
fn node_identifiers(self) -> Self::NodeIdentifiers
[src]
impl<N, E, Ty, Ix> NodeCount for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType,
[src]
impl<N, E, Ty, Ix> NodeCount for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType,
[src]fn node_count(&self) -> usize
[src]
impl<N, E, Ty, Ix> NodeIndexable for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType,
[src]
impl<N, E, Ty, Ix> NodeIndexable for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType,
[src]impl<N, E, Ty, Ix> Visitable for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType,
[src]
impl<N, E, Ty, Ix> Visitable for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType,
[src]type Map = FixedBitSet
The associated map type
fn visit_map(&self) -> FixedBitSet
[src]
fn reset_map(&self, map: &mut Self::Map)
[src]
impl<N, E, Ty, Ix> NodeCompactIndexable for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType,
[src]
Ty: EdgeType,
Ix: IndexType,
Auto Trait Implementations
impl<N, E, Ty, Ix> RefUnwindSafe for Csr<N, E, Ty, Ix> where
E: RefUnwindSafe,
Ix: RefUnwindSafe,
N: RefUnwindSafe,
Ty: RefUnwindSafe,
E: RefUnwindSafe,
Ix: RefUnwindSafe,
N: RefUnwindSafe,
Ty: RefUnwindSafe,
impl<N, E, Ty, Ix> Send for Csr<N, E, Ty, Ix> where
E: Send,
Ix: Send,
N: Send,
Ty: Send,
E: Send,
Ix: Send,
N: Send,
Ty: Send,
impl<N, E, Ty, Ix> Sync for Csr<N, E, Ty, Ix> where
E: Sync,
Ix: Sync,
N: Sync,
Ty: Sync,
E: Sync,
Ix: Sync,
N: Sync,
Ty: Sync,
impl<N, E, Ty, Ix> Unpin for Csr<N, E, Ty, Ix> where
E: Unpin,
Ix: Unpin,
N: Unpin,
Ty: Unpin,
E: Unpin,
Ix: Unpin,
N: Unpin,
Ty: Unpin,
impl<N, E, Ty, Ix> UnwindSafe for Csr<N, E, Ty, Ix> where
E: UnwindSafe,
Ix: UnwindSafe,
N: UnwindSafe,
Ty: UnwindSafe,
E: UnwindSafe,
Ix: UnwindSafe,
N: UnwindSafe,
Ty: UnwindSafe,