Struct slotmap::hop::HopSlotMap[][src]

pub struct HopSlotMap<K: Key, V: Slottable> { /* fields omitted */ }

Hop slot map, storage with stable unique keys.

See crate documentation for more details.

Implementations

impl<V: Slottable> HopSlotMap<DefaultKey, V>[src]

pub fn new() -> Self[src]

Constructs a new, empty HopSlotMap.

Examples

let mut sm: HopSlotMap<_, i32> = HopSlotMap::new();

pub fn with_capacity(capacity: usize) -> Self[src]

Creates an empty HopSlotMap with the given capacity.

The slot map will not reallocate until it holds at least capacity elements.

Examples

let mut sm: HopSlotMap<_, i32> = HopSlotMap::with_capacity(10);

impl<K: Key, V: Slottable> HopSlotMap<K, V>[src]

pub fn with_key() -> Self[src]

Constructs a new, empty HopSlotMap with a custom key type.

Examples

new_key_type! {
    struct PositionKey;
}
let mut positions: HopSlotMap<PositionKey, i32> = HopSlotMap::with_key();

pub fn with_capacity_and_key(capacity: usize) -> Self[src]

Creates an empty HopSlotMap with the given capacity and a custom key type.

The slot map will not reallocate until it holds at least capacity elements.

Examples

new_key_type! {
    struct MessageKey;
}
let mut messages = HopSlotMap::with_capacity_and_key(3);
let welcome: MessageKey = messages.insert("Welcome");
let good_day = messages.insert("Good day");
let hello = messages.insert("Hello");

pub fn len(&self) -> usize[src]

Returns the number of elements in the slot map.

Examples

let mut sm = HopSlotMap::with_capacity(10);
sm.insert("len() counts actual elements, not capacity");
let key = sm.insert("removed elements don't count either");
sm.remove(key);
assert_eq!(sm.len(), 1);

pub fn is_empty(&self) -> bool[src]

Returns if the slot map is empty.

Examples

let mut sm = HopSlotMap::new();
let key = sm.insert("dummy");
assert_eq!(sm.is_empty(), false);
sm.remove(key);
assert_eq!(sm.is_empty(), true);

pub fn capacity(&self) -> usize[src]

Returns the number of elements the HopSlotMap can hold without reallocating.

Examples

let sm: HopSlotMap<_, f64> = HopSlotMap::with_capacity(10);
assert_eq!(sm.capacity(), 10);

pub fn reserve(&mut self, additional: usize)[src]

Reserves capacity for at least additional more elements to be inserted in the HopSlotMap. The collection may reserve more space to avoid frequent reallocations.

Panics

Panics if the new allocation size overflows usize.

Examples

let mut sm = HopSlotMap::new();
sm.insert("foo");
sm.reserve(32);
assert!(sm.capacity() >= 33);

pub fn contains_key(&self, key: K) -> bool[src]

Returns true if the slot map contains key.

Examples

let mut sm = HopSlotMap::new();
let key = sm.insert(42);
assert_eq!(sm.contains_key(key), true);
sm.remove(key);
assert_eq!(sm.contains_key(key), false);

pub fn insert(&mut self, value: V) -> K[src]

Inserts a value into the slot map. Returns a unique key that can be used to access this value.

Panics

Panics if the number of elements in the slot map equals 232 - 2.

Examples

let mut sm = HopSlotMap::new();
let key = sm.insert(42);
assert_eq!(sm[key], 42);

pub fn insert_with_key<F>(&mut self, f: F) -> K where
    F: FnOnce(K) -> V, 
[src]

Inserts a value given by f into the slot map. The key where the value will be stored is passed into f. This is useful to store values that contain their own key.

Panics

Panics if the number of elements in the slot map equals 232 - 2.

Examples

let mut sm = HopSlotMap::new();
let key = sm.insert_with_key(|k| (k, 20));
assert_eq!(sm[key], (key, 20));

pub fn remove(&mut self, key: K) -> Option<V>[src]

Removes a key from the slot map, returning the value at the key if the key was not previously removed.

Examples

let mut sm = HopSlotMap::new();
let key = sm.insert(42);
assert_eq!(sm.remove(key), Some(42));
assert_eq!(sm.remove(key), None);

pub fn retain<F>(&mut self, f: F) where
    F: FnMut(K, &mut V) -> bool
[src]

Retains only the elements specified by the predicate.

In other words, remove all key-value pairs (k, v) such that f(k, &mut v) returns false. This method invalidates any removed keys.

Examples

let mut sm = HopSlotMap::new();

let k1 = sm.insert(0);
let k2 = sm.insert(1);
let k3 = sm.insert(2);

sm.retain(|key, val| key == k1 || *val == 1);

assert!(sm.contains_key(k1));
assert!(sm.contains_key(k2));
assert!(!sm.contains_key(k3));

assert_eq!(2, sm.len());

pub fn clear(&mut self)[src]

Clears the slot map. Keeps the allocated memory for reuse.

Examples

let mut sm = HopSlotMap::new();
for i in 0..10 {
    sm.insert(i);
}
assert_eq!(sm.len(), 10);
sm.clear();
assert_eq!(sm.len(), 0);

pub fn drain(&mut self) -> Drain<'_, K, V>

Notable traits for Drain<'a, K, V>

impl<'a, K: Key, V: Slottable> Iterator for Drain<'a, K, V> type Item = (K, V);
[src]

Clears the slot map, returning all key-value pairs in arbitrary order as an iterator. Keeps the allocated memory for reuse.

Even if the iterator is not (fully) consumed, when it goes out of scope all remaining elements are cleared.

Examples

let mut sm = HopSlotMap::new();
let k = sm.insert(0);
let v: Vec<_> = sm.drain().collect();
assert_eq!(sm.len(), 0);
assert_eq!(v, vec![(k, 0)]);

pub fn get(&self, key: K) -> Option<&V>[src]

Returns a reference to the value corresponding to the key.

Examples

let mut sm = HopSlotMap::new();
let key = sm.insert("bar");
assert_eq!(sm.get(key), Some(&"bar"));
sm.remove(key);
assert_eq!(sm.get(key), None);

pub unsafe fn get_unchecked(&self, key: K) -> &V[src]

Returns a reference to the value corresponding to the key without version or bounds checking.

Safety

This should only be used if contains_key(key) is true. Otherwise it is dangerous undefined behavior.

Examples

let mut sm = HopSlotMap::new();
let key = sm.insert("bar");
assert_eq!(unsafe { sm.get_unchecked(key) }, &"bar");
sm.remove(key);
// sm.get_unchecked(key) is now dangerous!

pub fn get_mut(&mut self, key: K) -> Option<&mut V>[src]

Returns a mutable reference to the value corresponding to the key.

Examples

let mut sm = HopSlotMap::new();
let key = sm.insert(3.5);
if let Some(x) = sm.get_mut(key) {
    *x += 3.0;
}
assert_eq!(sm[key], 6.5);

pub unsafe fn get_unchecked_mut(&mut self, key: K) -> &mut V[src]

Returns a mutable reference to the value corresponding to the key without version or bounds checking.

Safety

This should only be used if contains_key(key) is true. Otherwise it is dangerous undefined behavior.

Examples

let mut sm = HopSlotMap::new();
let key = sm.insert("foo");
unsafe { *sm.get_unchecked_mut(key) = "bar" };
assert_eq!(sm[key], "bar");
sm.remove(key);
// sm.get_unchecked_mut(key) is now dangerous!

pub fn iter(&self) -> Iter<'_, K, V>

Notable traits for Iter<'a, K, V>

impl<'a, K: Key, V: Slottable> Iterator for Iter<'a, K, V> type Item = (K, &'a V);
[src]

An iterator visiting all key-value pairs in arbitrary order. The iterator element type is (K, &'a V).

Examples

let mut sm = HopSlotMap::new();
let k0 = sm.insert(0);
let k1 = sm.insert(1);
let k2 = sm.insert(2);

for (k, v) in sm.iter() {
    println!("key: {:?}, val: {}", k, v);
}

pub fn iter_mut(&mut self) -> IterMut<'_, K, V>

Notable traits for IterMut<'a, K, V>

impl<'a, K: Key, V: Slottable> Iterator for IterMut<'a, K, V> type Item = (K, &'a mut V);
[src]

An iterator visiting all key-value pairs in arbitrary order, with mutable references to the values. The iterator element type is (K, &'a mut V).

Examples

let mut sm = HopSlotMap::new();
let k0 = sm.insert(10);
let k1 = sm.insert(20);
let k2 = sm.insert(30);

for (k, v) in sm.iter_mut() {
    if k != k1 {
        *v *= -1;
    }
}

assert_eq!(sm[k0], -10);
assert_eq!(sm[k1], 20);
assert_eq!(sm[k2], -30);

pub fn keys(&self) -> Keys<'_, K, V>

Notable traits for Keys<'a, K, V>

impl<'a, K: Key, V: Slottable> Iterator for Keys<'a, K, V> type Item = K;
[src]

An iterator visiting all keys in arbitrary order. The iterator element type is K.

Examples

let mut sm = HopSlotMap::new();
let k0 = sm.insert(10);
let k1 = sm.insert(20);
let k2 = sm.insert(30);
let keys: HashSet<_> = sm.keys().collect();
let check: HashSet<_> = vec![k0, k1, k2].into_iter().collect();
assert_eq!(keys, check);

pub fn values(&self) -> Values<'_, K, V>

Notable traits for Values<'a, K, V>

impl<'a, K: Key, V: Slottable> Iterator for Values<'a, K, V> type Item = &'a V;
[src]

An iterator visiting all values in arbitrary order. The iterator element type is &'a V.

Examples

let mut sm = HopSlotMap::new();
let k0 = sm.insert(10);
let k1 = sm.insert(20);
let k2 = sm.insert(30);
let values: HashSet<_> = sm.values().collect();
let check: HashSet<_> = vec![&10, &20, &30].into_iter().collect();
assert_eq!(values, check);

pub fn values_mut(&mut self) -> ValuesMut<'_, K, V>

Notable traits for ValuesMut<'a, K, V>

impl<'a, K: Key, V: Slottable> Iterator for ValuesMut<'a, K, V> type Item = &'a mut V;
[src]

An iterator visiting all values mutably in arbitrary order. The iterator element type is &'a mut V.

Examples

let mut sm = HopSlotMap::new();
sm.insert(1);
sm.insert(2);
sm.insert(3);
sm.values_mut().for_each(|n| { *n *= 3 });
let values: HashSet<_> = sm.into_iter().map(|(_k, v)| v).collect();
let check: HashSet<_> = vec![3, 6, 9].into_iter().collect();
assert_eq!(values, check);

Trait Implementations

impl<K: Clone + Key, V: Clone + Slottable> Clone for HopSlotMap<K, V>[src]

impl<K: Debug + Key, V: Debug + Slottable> Debug for HopSlotMap<K, V>[src]

impl<K: Key, V: Slottable> Default for HopSlotMap<K, V>[src]

impl<K: Key, V: Slottable> Index<K> for HopSlotMap<K, V>[src]

type Output = V

The returned type after indexing.

impl<K: Key, V: Slottable> IndexMut<K> for HopSlotMap<K, V>[src]

impl<'a, K: Key, V: Slottable> IntoIterator for &'a HopSlotMap<K, V>[src]

type Item = (K, &'a V)

The type of the elements being iterated over.

type IntoIter = Iter<'a, K, V>

Which kind of iterator are we turning this into?

impl<'a, K: Key, V: Slottable> IntoIterator for &'a mut HopSlotMap<K, V>[src]

type Item = (K, &'a mut V)

The type of the elements being iterated over.

type IntoIter = IterMut<'a, K, V>

Which kind of iterator are we turning this into?

impl<K: Key, V: Slottable> IntoIterator for HopSlotMap<K, V>[src]

type Item = (K, V)

The type of the elements being iterated over.

type IntoIter = IntoIter<K, V>

Which kind of iterator are we turning this into?

Auto Trait Implementations

impl<K, V> RefUnwindSafe for HopSlotMap<K, V> where
    V: RefUnwindSafe

impl<K, V> Send for HopSlotMap<K, V> where
    V: Send

impl<K, V> Sync for HopSlotMap<K, V> where
    V: Sync

impl<K, V> Unpin for HopSlotMap<K, V> where
    V: Unpin

impl<K, V> UnwindSafe for HopSlotMap<K, V> where
    V: UnwindSafe

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.