1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
//! Axis Aligned Bounding Box.

use crate::bounding_volume::{BoundingSphere, BoundingVolume, HasBoundingVolume};
use crate::math::{Isometry, Point, Vector, DIM};
use crate::utils::IsometryOps;
use na::{self, RealField};

// Seems useful to help type inference. See issue #84.
/// Computes the axis-aligned bounding box of a shape `g` transformed by `m`.
///
/// Same as `g.aabb(m)`.
#[inline]
pub fn aabb<N, G: ?Sized>(g: &G, m: &Isometry<N>) -> AABB<N>
where
    N: RealField,
    G: HasBoundingVolume<N, AABB<N>>,
{
    g.bounding_volume(m)
}

// Seems useful to help type inference. See issue #84.
/// Computes the axis-aligned bounding box of a shape `g`.
///
/// Same as `g.local_aabb(m)`.
#[inline]
pub fn local_aabb<N, G: ?Sized>(g: &G) -> AABB<N>
where
    N: RealField,
    G: HasBoundingVolume<N, AABB<N>>,
{
    g.local_bounding_volume()
}

/// An Axis Aligned Bounding Box.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug, PartialEq, Copy, Clone)]
pub struct AABB<N: RealField> {
    pub mins: Point<N>,
    pub maxs: Point<N>,
}

impl<N: RealField> AABB<N> {
    /// Creates a new AABB.
    ///
    /// # Arguments:
    ///   * `mins` - position of the point with the smallest coordinates.
    ///   * `maxs` - position of the point with the highest coordinates. Each component of `mins`
    ///   must be smaller than the related components of `maxs`.
    #[inline]
    pub fn new(mins: Point<N>, maxs: Point<N>) -> AABB<N> {
        AABB { mins, maxs }
    }

    /// Creates an invalid AABB with `mins` components set to `N::max_values` and `maxs`components set to `-N::max_values`.
    ///
    /// This is often used as the initial values of some AABB merging algorithms.
    #[inline]
    pub fn new_invalid() -> Self {
        Self::new(
            Vector::repeat(N::max_value()).into(),
            Vector::repeat(-N::max_value()).into(),
        )
    }

    /// Creates a new AABB from its center and its half-extents.
    #[inline]
    pub fn from_half_extents(center: Point<N>, half_extents: Vector<N>) -> Self {
        Self::new(center - half_extents, center + half_extents)
    }

    /// Creates a new AABB from a set of points.
    pub fn from_points<'a, I>(pts: I) -> Self
    where
        I: IntoIterator<Item = &'a Point<N>>,
    {
        super::aabb_utils::local_point_cloud_aabb(pts)
    }

    /// Reference to the AABB point with the smallest components along each axis.
    #[inline]
    #[deprecated(note = "use the `.mins` public field instead.")]
    pub fn mins(&self) -> &Point<N> {
        &self.mins
    }

    /// Reference to the AABB point with the biggest components along each axis.
    #[inline]
    #[deprecated(note = "use the `.maxs` public field instead.")]
    pub fn maxs(&self) -> &Point<N> {
        &self.maxs
    }

    /// The center of this AABB.
    #[inline]
    pub fn center(&self) -> Point<N> {
        na::center(&self.mins, &self.maxs)
    }

    /// The half extents of this AABB.
    #[inline]
    pub fn half_extents(&self) -> Vector<N> {
        let half: N = na::convert(0.5);
        (self.maxs - self.mins) * half
    }

    /// The extents of this AABB.
    #[inline]
    pub fn extents(&self) -> Vector<N> {
        self.maxs - self.mins
    }

    /// Enlarges this AABB so it also contains the point `pt`.
    pub fn take_point(&mut self, pt: Point<N>) {
        self.mins = self.mins.coords.inf(&pt.coords).into();
        self.maxs = self.maxs.coords.sup(&pt.coords).into();
    }

    /// Computes the AABB bounding `self` transformed by `m`.
    #[inline]
    pub fn transform_by(&self, m: &Isometry<N>) -> Self {
        let ls_center = self.center();
        let center = m * ls_center;
        let ws_half_extents = m.absolute_transform_vector(&self.half_extents());

        AABB::new(center + (-ws_half_extents), center + ws_half_extents)
    }

    /// The smallest bounding sphere containing this AABB.
    #[inline]
    pub fn bounding_sphere(&self) -> BoundingSphere<N> {
        let center = self.center();
        let rad = na::distance(&self.mins, &self.maxs);

        BoundingSphere::new(center, rad)
    }

    #[inline]
    pub fn contains_local_point(&self, point: &Point<N>) -> bool {
        for i in 0..DIM {
            if point[i] < self.mins[i] || point[i] > self.maxs[i] {
                return false;
            }
        }

        true
    }
}

impl<N: RealField> BoundingVolume<N> for AABB<N> {
    #[inline]
    fn center(&self) -> Point<N> {
        self.center()
    }

    #[inline]
    fn intersects(&self, other: &AABB<N>) -> bool {
        na::partial_le(&self.mins, &other.maxs) && na::partial_ge(&self.maxs, &other.mins)
    }

    #[inline]
    fn contains(&self, other: &AABB<N>) -> bool {
        na::partial_le(&self.mins, &other.mins) && na::partial_ge(&self.maxs, &other.maxs)
    }

    #[inline]
    fn merge(&mut self, other: &AABB<N>) {
        self.mins = self.mins.inf(&other.mins);
        self.maxs = self.maxs.sup(&other.maxs);
    }

    #[inline]
    fn merged(&self, other: &AABB<N>) -> AABB<N> {
        AABB {
            mins: self.mins.inf(&other.mins),
            maxs: self.maxs.sup(&other.maxs),
        }
    }

    #[inline]
    fn loosen(&mut self, amount: N) {
        assert!(
            amount >= na::zero(),
            "The loosening margin must be positive."
        );
        self.mins = self.mins + Vector::repeat(-amount);
        self.maxs = self.maxs + Vector::repeat(amount);
    }

    #[inline]
    fn loosened(&self, amount: N) -> AABB<N> {
        assert!(
            amount >= na::zero(),
            "The loosening margin must be positive."
        );
        AABB {
            mins: self.mins + Vector::repeat(-amount),
            maxs: self.maxs + Vector::repeat(amount),
        }
    }

    #[inline]
    fn tighten(&mut self, amount: N) {
        assert!(
            amount >= na::zero(),
            "The tightening margin must be positive."
        );
        self.mins = self.mins + Vector::repeat(amount);
        self.maxs = self.maxs + Vector::repeat(-amount);
        assert!(
            na::partial_le(&self.mins, &self.maxs),
            "The tightening margin is to large."
        );
    }

    #[inline]
    fn tightened(&self, amount: N) -> AABB<N> {
        assert!(
            amount >= na::zero(),
            "The tightening margin must be positive."
        );

        AABB::new(
            self.mins + Vector::repeat(amount),
            self.maxs + Vector::repeat(-amount),
        )
    }
}