Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
use crate::math::{Isometry, Point};
use crate::pipeline::narrow_phase::{ContactDispatcher, ContactManifoldGenerator};
use crate::query::{
    Contact, ContactKinematic, ContactManifold, ContactPrediction, ContactPreprocessor,
    NeighborhoodGeometry,
};
use crate::shape::{Ball, FeatureId, Plane, Shape};
use na::{self, RealField};
use std::marker::PhantomData;

/// Collision detector between g1 plane and g1 shape implementing the `SupportMap` trait.
#[derive(Clone)]
pub struct PlaneBallManifoldGenerator<N: RealField> {
    flip: bool,
    phantom: PhantomData<N>,
}

impl<N: RealField> PlaneBallManifoldGenerator<N> {
    /// Creates g1 new persistent collision detector between g1 plane and g1 shape with g1 support
    /// mapping function.
    #[inline]
    pub fn new(flip: bool) -> PlaneBallManifoldGenerator<N> {
        PlaneBallManifoldGenerator {
            flip,
            phantom: PhantomData,
        }
    }

    #[inline]
    fn do_update_to(
        m1: &Isometry<N>,
        g1: &dyn Shape<N>,
        proc1: Option<&dyn ContactPreprocessor<N>>,
        m2: &Isometry<N>,
        g2: &dyn Shape<N>,
        proc2: Option<&dyn ContactPreprocessor<N>>,
        prediction: &ContactPrediction<N>,
        manifold: &mut ContactManifold<N>,
        flip: bool,
    ) -> bool {
        if let (Some(plane), Some(ball)) = (g1.as_shape::<Plane<N>>(), g2.as_shape::<Ball<N>>()) {
            let plane_normal = m1 * plane.normal;
            let plane_center = Point::from(m1.translation.vector);

            let ball_center = Point::from(m2.translation.vector);
            let dist = (ball_center - plane_center).dot(plane_normal.as_ref());
            let depth = -dist + ball.radius;

            if depth > -prediction.linear() {
                let world1 = ball_center + *plane_normal * (-dist);
                let world2 = ball_center + *plane_normal * (-ball.radius);

                let local1 = m1.inverse_transform_point(&world1);
                let local2 = Point::origin();

                let f1 = FeatureId::Face(0);
                let f2 = FeatureId::Face(0);
                let mut kinematic = ContactKinematic::new();
                let contact;

                let approx_ball = NeighborhoodGeometry::Point;
                let approx_plane = NeighborhoodGeometry::Plane(plane.normal);

                if !flip {
                    contact = Contact::new(world1, world2, plane_normal, depth);
                    kinematic.set_approx1(f1, local1, approx_plane);
                    kinematic.set_approx2(f2, local2, approx_ball);
                    kinematic.set_dilation2(ball.radius);
                    let _ = manifold.push(contact, kinematic, Point::origin(), proc1, proc2);
                } else {
                    contact = Contact::new(world2, world1, -plane_normal, depth);
                    kinematic.set_approx1(f2, local2, approx_ball);
                    kinematic.set_dilation1(ball.radius);
                    kinematic.set_approx2(f1, local1, approx_plane);
                    let _ = manifold.push(contact, kinematic, Point::origin(), proc2, proc1);
                }
            }

            true
        } else {
            false
        }
    }
}

impl<N: RealField> ContactManifoldGenerator<N> for PlaneBallManifoldGenerator<N> {
    #[inline]
    fn generate_contacts(
        &mut self,
        _: &dyn ContactDispatcher<N>,
        m1: &Isometry<N>,
        g1: &dyn Shape<N>,
        proc1: Option<&dyn ContactPreprocessor<N>>,
        m2: &Isometry<N>,
        g2: &dyn Shape<N>,
        proc2: Option<&dyn ContactPreprocessor<N>>,
        prediction: &ContactPrediction<N>,
        manifold: &mut ContactManifold<N>,
    ) -> bool {
        if !self.flip {
            Self::do_update_to(m1, g1, proc1, m2, g2, proc2, prediction, manifold, false)
        } else {
            Self::do_update_to(m2, g2, proc2, m1, g1, proc1, prediction, manifold, true)
        }
    }
}