Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
use super::utils;
use crate::math::{Isometry, Point, Translation, Vector, DIM};
use crate::utils::DeterministicState;
use na::{self, Point2, Point3, RealField};
use std::collections::HashMap;

/// Different representations of the index buffer.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum IndexBuffer {
    /// The vertex, normal, and uvs share the same indices.
    Unified(Vec<Point3<u32>>),
    /// The vertex, normal, and uvs have different indices.
    Split(Vec<Point3<Point3<u32>>>),
}

impl IndexBuffer {
    /// Returns the unified index buffer data or fails.
    #[inline]
    pub fn unwrap_unified(self) -> Vec<Point3<u32>> {
        match self {
            IndexBuffer::Unified(b) => b,
            _ => panic!("Unable to unwrap to an unified buffer."),
        }
    }

    /// Returns the split index buffer data or fails.
    #[inline]
    pub fn unwrap_split(self) -> Vec<Point3<Point3<u32>>> {
        match self {
            IndexBuffer::Split(b) => b,
            _ => panic!("Unable to unwrap to a split buffer."),
        }
    }
}

#[derive(Clone, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
/// Geometric description of a mesh.
pub struct TriMesh<N: RealField> {
    // FIXME: those should *not* be public.
    /// Coordinates of the mesh vertices.
    pub coords: Vec<Point<N>>,
    /// Coordinates of the mesh normals.
    pub normals: Option<Vec<Vector<N>>>,
    /// Textures coordinates of the mesh.
    pub uvs: Option<Vec<Point2<N>>>,
    /// Index buffer of the mesh.
    pub indices: IndexBuffer,
}

impl<N: RealField> TriMesh<N> {
    /// Creates a new `TriMesh`.
    ///
    /// If no `indices` is provided, trivial, sequential indices are generated.
    pub fn new(
        coords: Vec<Point<N>>,
        normals: Option<Vec<Vector<N>>>,
        uvs: Option<Vec<Point2<N>>>,
        indices: Option<IndexBuffer>,
    ) -> TriMesh<N> {
        // generate trivial indices
        let idx = indices.unwrap_or_else(|| {
            IndexBuffer::Unified(
                (0..coords.len() / 3)
                    .map(|i| Point3::new(i as u32 * 3, i as u32 * 3 + 1, i as u32 * 3 + 2))
                    .collect(),
            )
        });

        TriMesh {
            coords: coords,
            normals: normals,
            uvs: uvs,
            indices: idx,
        }
    }

    /// Whether or not this triangle mesh has normals.
    #[inline]
    pub fn has_normals(&self) -> bool {
        self.normals.is_some()
    }

    /// Whether or not this triangle mesh has texture coordinates.
    #[inline]
    pub fn has_uvs(&self) -> bool {
        self.uvs.is_some()
    }

    /// Translates each vertex of this mesh.
    #[inline]
    pub fn translate_by(&mut self, t: &Translation<N>) {
        for c in self.coords.iter_mut() {
            *c = t * &*c;
        }
    }

    /// Transforms each vertex and rotates each normal of this mesh.
    #[inline]
    pub fn transform_by(&mut self, t: &Isometry<N>) {
        for c in self.coords.iter_mut() {
            *c = t * &*c;
        }

        for n in self.normals.iter_mut() {
            for n in n.iter_mut() {
                *n = t * &*n;
            }
        }
    }

    /// The number of triangles on this mesh.
    #[inline]
    pub fn num_triangles(&self) -> usize {
        match self.indices {
            IndexBuffer::Unified(ref idx) => idx.len(),
            IndexBuffer::Split(ref idx) => idx.len(),
        }
    }

    /// Returns only the vertex ids from the index buffer.
    #[inline]
    pub fn flat_indices(&self) -> Vec<u32> {
        let mut res = Vec::with_capacity(self.num_triangles() * 3);

        match self.indices {
            IndexBuffer::Unified(ref idx) => {
                for i in idx {
                    res.push(i[0]);
                    res.push(i[1]);
                    res.push(i[2]);
                }
            }
            IndexBuffer::Split(ref idx) => {
                for i in idx {
                    res.push(i[0][0]);
                    res.push(i[1][0]);
                    res.push(i[2][0]);
                }
            }
        }

        res
    }
}

impl<N: RealField> TriMesh<N> {
    /// Recomputes the mesh normals using its vertex coordinates and adjascency informations
    /// infered from the index buffer.
    #[inline]
    pub fn recompute_normals(&mut self) {
        let mut new_normals = Vec::new();

        match self.indices {
            IndexBuffer::Unified(ref idx) => {
                utils::compute_normals(&self.coords[..], &idx[..], &mut new_normals);
            }
            IndexBuffer::Split(ref idx) => {
                // XXX: too bad we have to reconstruct the index buffer here.
                // The utils::recompute_normals function should be generic wrt. the index buffer
                // type (it could use an iterator instead).
                let coord_idx: Vec<Point3<u32>> = idx
                    .iter()
                    .map(|t| Point3::new(t.x.x, t.y.x, t.z.x))
                    .collect();

                utils::compute_normals(&self.coords[..], &coord_idx[..], &mut new_normals);
            }
        }

        self.normals = Some(new_normals);
    }

    /// Flips all the normals of this mesh.
    #[inline]
    pub fn flip_normals(&mut self) {
        if let Some(ref mut normals) = self.normals {
            for n in normals {
                *n = *n
            }
        }
    }

    /// Flips the orientation of every triangle of this mesh.
    #[inline]
    pub fn flip_triangles(&mut self) {
        match self.indices {
            IndexBuffer::Unified(ref mut idx) => {
                for i in idx {
                    i.coords.swap((1, 0), (2, 0))
                }
            }
            IndexBuffer::Split(ref mut idx) => {
                for i in idx {
                    i.coords.swap((1, 0), (2, 0))
                }
            }
        }
    }

    /// Scales each vertex of this mesh.
    #[inline]
    pub fn scale_by(&mut self, s: &Vector<N>) {
        for c in self.coords.iter_mut() {
            for i in 0..DIM {
                c[i] = (*c)[i] * s[i];
            }
        }
        // FIXME: do something for the normals?
    }
}

impl<N: RealField> TriMesh<N> {
    /// Scales each vertex of this mesh.
    #[inline]
    pub fn scale_by_scalar(&mut self, s: N) {
        for c in self.coords.iter_mut() {
            *c = *c * s
        }
    }
}

impl<N: RealField> TriMesh<N> {
    // FIXME: looks very similar to the `reformat` on obj.rs
    /// Force the mesh to use the same index for vertices, normals and uvs.
    ///
    /// This might cause the duplication of some vertices, normals and uvs.
    /// Use this method to transform the mesh data to a OpenGL-compliant format.
    pub fn unify_index_buffer(&mut self) {
        let new_indices = match self.indices {
            IndexBuffer::Split(ref ids) => {
                let mut vt2id: HashMap<Point3<u32>, u32, _> =
                    HashMap::with_hasher(DeterministicState::new());
                let mut resi: Vec<u32> = Vec::new();
                let mut resc: Vec<Point<N>> = Vec::new();
                let mut resn: Option<Vec<Vector<N>>> = self.normals.as_ref().map(|_| Vec::new());
                let mut resu: Option<Vec<Point2<N>>> = self.uvs.as_ref().map(|_| Vec::new());

                for triangle in ids.iter() {
                    for point in triangle.iter() {
                        let idx = match vt2id.get(point) {
                            Some(i) => {
                                resi.push(*i);
                                None
                            }
                            None => {
                                let idx = resc.len() as u32;

                                resc.push(self.coords[point.x as usize].clone());

                                let _ = resn.as_mut().map(|l| {
                                    l.push(self.normals.as_ref().unwrap()[point.y as usize].clone())
                                });
                                let _ = resu.as_mut().map(|l| {
                                    l.push(self.uvs.as_ref().unwrap()[point.z as usize].clone())
                                });

                                resi.push(idx);

                                Some(idx)
                            }
                        };

                        let _ = idx.map(|i| vt2id.insert(point.clone(), i));
                    }
                }

                self.coords = resc;
                self.normals = resn;
                self.uvs = resu;

                let mut batched_indices = Vec::new();

                assert!(resi.len() % 3 == 0);
                for f in resi[..].chunks(3) {
                    batched_indices.push(Point3::new(f[0], f[1], f[2]));
                }

                Some(IndexBuffer::Unified(batched_indices))
            }
            _ => None,
        };

        let _ = new_indices.map(|nids| self.indices = nids);
    }

    /// Unifies the index buffer and ensure duplicate each vertex
    /// are duplicated such that no two vertex entry of the index buffer
    /// are equal.
    pub fn replicate_vertices(&mut self) {
        let mut resi: Vec<u32> = Vec::new();
        let mut resc: Vec<Point<N>> = Vec::new();
        let mut resn: Option<Vec<Vector<N>>> = self.normals.as_ref().map(|_| Vec::new());
        let mut resu: Option<Vec<Point2<N>>> = self.uvs.as_ref().map(|_| Vec::new());

        match self.indices {
            IndexBuffer::Split(ref ids) => {
                for triangle in ids.iter() {
                    for point in triangle.iter() {
                        let idx = resc.len() as u32;
                        resc.push(self.coords[point.x as usize].clone());

                        let _ = resn.as_mut().map(|l| {
                            l.push(self.normals.as_ref().unwrap()[point.y as usize].clone())
                        });
                        let _ = resu
                            .as_mut()
                            .map(|l| l.push(self.uvs.as_ref().unwrap()[point.z as usize].clone()));

                        resi.push(idx);
                    }
                }
            }
            IndexBuffer::Unified(ref ids) => {
                for triangle in ids.iter() {
                    for point in triangle.iter() {
                        let idx = resc.len() as u32;
                        resc.push(self.coords[*point as usize].clone());

                        let _ = resn.as_mut().map(|l| {
                            l.push(self.normals.as_ref().unwrap()[*point as usize].clone())
                        });
                        let _ = resu
                            .as_mut()
                            .map(|l| l.push(self.uvs.as_ref().unwrap()[*point as usize].clone()));

                        resi.push(idx);
                    }
                }
            }
        };

        self.coords = resc;
        self.normals = resn;
        self.uvs = resu;

        let mut batched_indices = Vec::new();

        assert!(resi.len() % 3 == 0);
        for f in resi[..].chunks(3) {
            batched_indices.push(Point3::new(f[0], f[1], f[2]));
        }

        self.indices = IndexBuffer::Unified(batched_indices)
    }
}

impl<N: RealField> TriMesh<N> {
    /// Forces the mesh to use a different index for the vertices, normals and uvs.
    ///
    /// If `recover_topology` is true, this will merge exactly identical vertices together.
    pub fn split_index_buffer(&mut self, recover_topology: bool) {
        let new_indices = match self.indices {
            IndexBuffer::Unified(ref ids) => {
                let resi;

                if recover_topology {
                    let (idx, coords) =
                        utils::split_index_buffer_and_recover_topology(&ids[..], &self.coords[..]);
                    self.coords = coords;
                    resi = idx;
                } else {
                    resi = utils::split_index_buffer(&ids[..]);
                }

                Some(IndexBuffer::Split(resi))
            }
            _ => None,
        };

        let _ = new_indices.map(|nids| self.indices = nids);
    }
}