Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
use crate::math::{Isometry, Point, Vector};
use crate::shape::SupportMap;
use na::{RealField, Unit};
use std::ops::Sub;

/// A point of a Configuration-Space Obstacle.
///
/// A Configuration-Space Obstacle (CSO) is the result of the
/// Minkowski Difference of two solids. In other words, each of its
/// points correspond to the difference of two point, each belonging
/// to a different solid.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct CSOPoint<N: RealField> {
    /// The point on the CSO. This is equal to `self.orig1 - self.orig2`, unless this CSOPoint
    /// has been translated with self.translate.
    pub point: Point<N>,
    /// The original point on the first shape used to compute `self.point`.
    pub orig1: Point<N>,
    /// The original point on the second shape used to compute `self.point`.
    pub orig2: Point<N>,
}

impl<N: RealField> CSOPoint<N> {
    /// Initializes a CSO point with `orig1 - orig2`.
    pub fn new(orig1: Point<N>, orig2: Point<N>) -> Self {
        let point = Point::from(orig1 - orig2);
        Self::new_with_point(point, orig1, orig2)
    }

    /// Initializes a CSO point with all information provided.
    ///
    /// It is assumed, but not checked, that `point == orig1 - orig2`.
    pub fn new_with_point(point: Point<N>, orig1: Point<N>, orig2: Point<N>) -> Self {
        CSOPoint {
            point,
            orig1,
            orig2,
        }
    }

    /// Initializes a CSO point where both original points are equal.
    pub fn single_point(point: Point<N>) -> Self {
        Self::new_with_point(point, point, Point::origin())
    }

    /// CSO point where all components are set to zero.
    pub fn origin() -> Self {
        CSOPoint::new(Point::origin(), Point::origin())
    }

    /// Computes the support point of the CSO of `g1` and `g2` toward the unit direction `dir`.
    pub fn from_shapes_toward<G1: ?Sized, G2: ?Sized>(
        m1: &Isometry<N>,
        g1: &G1,
        m2: &Isometry<N>,
        g2: &G2,
        dir: &Unit<Vector<N>>,
    ) -> Self
    where
        G1: SupportMap<N>,
        G2: SupportMap<N>,
    {
        let sp1 = g1.support_point_toward(m1, dir);
        let sp2 = g2.support_point_toward(m2, &-*dir);

        CSOPoint::new(sp1, sp2)
    }

    /// Computes the support point of the CSO of `g1` and `g2` toward the direction `dir`.
    pub fn from_shapes<G1: ?Sized, G2: ?Sized>(
        m1: &Isometry<N>,
        g1: &G1,
        m2: &Isometry<N>,
        g2: &G2,
        dir: &Vector<N>,
    ) -> Self
    where
        G1: SupportMap<N>,
        G2: SupportMap<N>,
    {
        let sp1 = g1.support_point(m1, dir);
        let sp2 = g2.support_point(m2, &-*dir);

        CSOPoint::new(sp1, sp2)
    }

    /// Translate the CSO point.
    pub fn translate(&self, dir: &Vector<N>) -> Self {
        CSOPoint::new_with_point(self.point + dir, self.orig1, self.orig2)
    }

    /// Translate in-place the CSO point.
    pub fn translate_mut(&mut self, dir: &Vector<N>) {
        self.point += dir;
    }
}

impl<N: RealField> Sub<CSOPoint<N>> for CSOPoint<N> {
    type Output = Vector<N>;

    #[inline]
    fn sub(self, rhs: CSOPoint<N>) -> Vector<N> {
        self.point - rhs.point
    }
}