1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
//! Three-dimensional penetration depth queries using the Expanding Polytope Algorithm.

use crate::math::{Isometry, Point, Vector};
use crate::query::algorithms::special_support_maps::ConstantOrigin;
use crate::query::algorithms::{gjk, CSOPoint, VoronoiSimplex};
use crate::query::PointQueryWithLocation;
use crate::shape::{SupportMap, Triangle, TrianglePointLocation};
use crate::utils;
use na::{self, RealField, Unit};
use std::cmp::Ordering;
use std::collections::BinaryHeap;

#[derive(Copy, Clone, PartialEq)]
struct FaceId<N: RealField> {
    id: usize,
    neg_dist: N,
}

impl<N: RealField> FaceId<N> {
    fn new(id: usize, neg_dist: N) -> Option<Self> {
        if neg_dist > gjk::eps_tol() {
            None
        } else {
            Some(FaceId { id, neg_dist })
        }
    }
}

impl<N: RealField> Eq for FaceId<N> {}

impl<N: RealField> PartialOrd for FaceId<N> {
    #[inline]
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        self.neg_dist.partial_cmp(&other.neg_dist)
    }
}

impl<N: RealField> Ord for FaceId<N> {
    #[inline]
    fn cmp(&self, other: &Self) -> Ordering {
        if self.neg_dist < other.neg_dist {
            Ordering::Less
        } else if self.neg_dist > other.neg_dist {
            Ordering::Greater
        } else {
            Ordering::Equal
        }
    }
}

#[derive(Clone, Debug)]
struct Face<N: RealField> {
    pts: [usize; 3],
    adj: [usize; 3],
    normal: Unit<Vector<N>>,
    proj: Point<N>,
    bcoords: [N; 3],
    deleted: bool,
}

impl<N: RealField> Face<N> {
    pub fn new_with_proj(
        vertices: &[CSOPoint<N>],
        proj: Point<N>,
        bcoords: [N; 3],
        pts: [usize; 3],
        adj: [usize; 3],
    ) -> Self {
        let normal;

        if let Some(n) = utils::ccw_face_normal([
            &vertices[pts[0]].point,
            &vertices[pts[1]].point,
            &vertices[pts[2]].point,
        ]) {
            normal = n;
        } else {
            // This is a bit of a hack for degenerate faces.
            // TODO: It will work OK with our current code, though
            // we should do this in another way to avoid any risk
            // of misusing the face normal in the future.
            normal = Unit::new_unchecked(na::zero());
        }

        Face {
            pts,
            proj,
            bcoords,
            adj,
            normal,
            deleted: false,
        }
    }

    pub fn new(vertices: &[CSOPoint<N>], pts: [usize; 3], adj: [usize; 3]) -> (Self, bool) {
        let tri = Triangle::new(
            vertices[pts[0]].point,
            vertices[pts[1]].point,
            vertices[pts[2]].point,
        );
        let (proj, loc) =
            tri.project_point_with_location(&Isometry::identity(), &Point::origin(), true);

        match loc {
            TrianglePointLocation::OnFace(_, bcoords) => (
                Self::new_with_proj(vertices, proj.point, bcoords, pts, adj),
                true,
            ),
            _ => (
                Self::new_with_proj(vertices, proj.point, [N::zero(); 3], pts, adj),
                false,
            ),
        }
    }

    pub fn closest_points(&self, vertices: &[CSOPoint<N>]) -> (Point<N>, Point<N>) {
        (
            vertices[self.pts[0]].orig1 * self.bcoords[0]
                + vertices[self.pts[1]].orig1.coords * self.bcoords[1]
                + vertices[self.pts[2]].orig1.coords * self.bcoords[2],
            vertices[self.pts[0]].orig2 * self.bcoords[0]
                + vertices[self.pts[1]].orig2.coords * self.bcoords[1]
                + vertices[self.pts[2]].orig2.coords * self.bcoords[2],
        )
    }

    pub fn contains_point(&self, id: usize) -> bool {
        self.pts[0] == id || self.pts[1] == id || self.pts[2] == id
    }

    pub fn next_ccw_pt_id(&self, id: usize) -> usize {
        if self.pts[0] == id {
            1
        } else if self.pts[1] == id {
            2
        } else {
            assert_eq!(self.pts[2], id);
            0
        }
    }

    pub fn can_be_seen_by(&self, vertices: &[CSOPoint<N>], point: usize, opp_pt_id: usize) -> bool {
        let p0 = &vertices[self.pts[opp_pt_id]].point;
        let p1 = &vertices[self.pts[(opp_pt_id + 1) % 3]].point;
        let p2 = &vertices[self.pts[(opp_pt_id + 2) % 3]].point;
        let pt = &vertices[point].point;

        // NOTE: it is important that we return true for the case where
        // the dot product is zero. This is because degenerate faces will
        // have a zero normal, causing the dot product to be zero.
        // So return true for these case will let us skip the triangle
        // during silhouette computation.
        (*pt - *p0).dot(&self.normal) >= -gjk::eps_tol::<N>()
            || utils::is_affinely_dependent_triangle(p1, p2, pt)
    }
}

struct SilhouetteEdge {
    face_id: usize,
    opp_pt_id: usize,
}

impl SilhouetteEdge {
    pub fn new(face_id: usize, opp_pt_id: usize) -> Self {
        SilhouetteEdge { face_id, opp_pt_id }
    }
}

/// The Expanding Polytope Algorithm in 3D.
pub struct EPA<N: RealField> {
    vertices: Vec<CSOPoint<N>>,
    faces: Vec<Face<N>>,
    silhouette: Vec<SilhouetteEdge>,
    heap: BinaryHeap<FaceId<N>>,
}

impl<N: RealField> EPA<N> {
    /// Creates a new instance of the 3D Expanding Polytope Algorithm.
    pub fn new() -> Self {
        EPA {
            vertices: Vec::new(),
            faces: Vec::new(),
            silhouette: Vec::new(),
            heap: BinaryHeap::new(),
        }
    }

    fn reset(&mut self) {
        self.vertices.clear();
        self.faces.clear();
        self.heap.clear();
        self.silhouette.clear();
    }

    /// Projects the origin on boundary of the given shape.
    ///
    /// The origin is assumed to be inside of the shape. If it is outside
    /// use the GJK algorithm instead.
    /// Return `None` if the origin is not inside of the shape or if
    /// the EPA algorithm failed to compute the projection.
    pub fn project_origin<G: ?Sized>(
        &mut self,
        m: &Isometry<N>,
        g: &G,
        simplex: &VoronoiSimplex<N>,
    ) -> Option<Point<N>>
    where
        G: SupportMap<N>,
    {
        self.closest_points(m, g, &Isometry::identity(), &ConstantOrigin, simplex)
            .map(|(p, _, _)| p)
    }

    /// Projects the origin on a shape unsing the EPA algorithm.
    ///
    /// The origin is assumed to be located inside of the shape.
    /// Returns `None` if the EPA fails to converge or if `g1` and `g2` are not penetrating.
    pub fn closest_points<G1: ?Sized, G2: ?Sized>(
        &mut self,
        m1: &Isometry<N>,
        g1: &G1,
        m2: &Isometry<N>,
        g2: &G2,
        simplex: &VoronoiSimplex<N>,
    ) -> Option<(Point<N>, Point<N>, Unit<Vector<N>>)>
    where
        G1: SupportMap<N>,
        G2: SupportMap<N>,
    {
        let _eps = N::default_epsilon();
        let _eps_tol = _eps * na::convert(100.0f64);

        self.reset();

        /*
         * Initialization.
         */
        for i in 0..simplex.dimension() + 1 {
            self.vertices.push(*simplex.point(i));
        }

        if simplex.dimension() == 0 {
            let mut n: Vector<N> = na::zero();
            n[1] = na::one();
            return Some((Point::origin(), Point::origin(), Unit::new_unchecked(n)));
        } else if simplex.dimension() == 3 {
            let dp1 = self.vertices[1] - self.vertices[0];
            let dp2 = self.vertices[2] - self.vertices[0];
            let dp3 = self.vertices[3] - self.vertices[0];

            if dp1.cross(&dp2).dot(&dp3) > na::zero() {
                self.vertices.swap(1, 2)
            }

            let pts1 = [0, 1, 2];
            let pts2 = [1, 3, 2];
            let pts3 = [0, 2, 3];
            let pts4 = [0, 3, 1];

            let adj1 = [3, 1, 2];
            let adj2 = [3, 2, 0];
            let adj3 = [0, 1, 3];
            let adj4 = [2, 1, 0];

            let (face1, proj_inside1) = Face::new(&self.vertices, pts1, adj1);
            let (face2, proj_inside2) = Face::new(&self.vertices, pts2, adj2);
            let (face3, proj_inside3) = Face::new(&self.vertices, pts3, adj3);
            let (face4, proj_inside4) = Face::new(&self.vertices, pts4, adj4);

            self.faces.push(face1);
            self.faces.push(face2);
            self.faces.push(face3);
            self.faces.push(face4);

            if proj_inside1 {
                let dist1 = self.faces[0].normal.dot(&self.vertices[0].point.coords);
                self.heap.push(FaceId::new(0, -dist1)?);
            }

            if proj_inside2 {
                let dist2 = self.faces[1].normal.dot(&self.vertices[1].point.coords);
                self.heap.push(FaceId::new(1, -dist2)?);
            }

            if proj_inside3 {
                let dist3 = self.faces[2].normal.dot(&self.vertices[2].point.coords);
                self.heap.push(FaceId::new(2, -dist3)?);
            }

            if proj_inside4 {
                let dist4 = self.faces[3].normal.dot(&self.vertices[3].point.coords);
                self.heap.push(FaceId::new(3, -dist4)?);
            }
        } else {
            if simplex.dimension() == 1 {
                let dpt = self.vertices[1] - self.vertices[0];

                Vector::orthonormal_subspace_basis(&[dpt], |dir| {
                    // XXX: dir should already be unit on nalgebra!
                    let dir = Unit::new_unchecked(*dir);
                    self.vertices
                        .push(CSOPoint::from_shapes(m1, g1, m2, g2, &dir));
                    false
                });
            }

            let pts1 = [0, 1, 2];
            let pts2 = [0, 2, 1];

            let adj1 = [1, 1, 1];
            let adj2 = [0, 0, 0];

            let (face1, _) = Face::new(&self.vertices, pts1, adj1);
            let (face2, _) = Face::new(&self.vertices, pts2, adj2);
            self.faces.push(face1);
            self.faces.push(face2);

            self.heap.push(FaceId::new(0, na::zero())?);
            self.heap.push(FaceId::new(1, na::zero())?);
        }

        let mut niter = 0;
        let mut max_dist = N::max_value();
        let mut best_face_id = *self.heap.peek().unwrap();

        /*
         * Run the expansion.
         */
        while let Some(face_id) = self.heap.pop() {
            // Create new faces.
            let face = self.faces[face_id.id].clone();

            if face.deleted {
                continue;
            }

            let cso_point = CSOPoint::from_shapes(m1, g1, m2, g2, &face.normal);
            let support_point_id = self.vertices.len();
            self.vertices.push(cso_point);

            let candidate_max_dist = cso_point.point.coords.dot(&face.normal);

            if candidate_max_dist < max_dist {
                best_face_id = face_id;
                max_dist = candidate_max_dist;
            }

            let curr_dist = -face_id.neg_dist;

            if max_dist - curr_dist < _eps_tol {
                let best_face = &self.faces[best_face_id.id];
                let points = best_face.closest_points(&self.vertices);
                return Some((points.0, points.1, best_face.normal));
            }

            self.faces[face_id.id].deleted = true;

            let adj_opp_pt_id1 = self.faces[face.adj[0]].next_ccw_pt_id(face.pts[0]);
            let adj_opp_pt_id2 = self.faces[face.adj[1]].next_ccw_pt_id(face.pts[1]);
            let adj_opp_pt_id3 = self.faces[face.adj[2]].next_ccw_pt_id(face.pts[2]);

            self.compute_silhouette(support_point_id, face.adj[0], adj_opp_pt_id1);
            self.compute_silhouette(support_point_id, face.adj[1], adj_opp_pt_id2);
            self.compute_silhouette(support_point_id, face.adj[2], adj_opp_pt_id3);

            let first_new_face_id = self.faces.len();

            if self.silhouette.len() == 0 {
                // FIXME: Something went very wrong because we failed to extract a silhouette…
                return None;
            }

            for edge in &self.silhouette {
                if !self.faces[edge.face_id].deleted {
                    let new_face_id = self.faces.len();
                    let new_face;

                    // FIXME: NLL
                    {
                        let face_adj = &mut self.faces[edge.face_id];
                        let pt_id1 = face_adj.pts[(edge.opp_pt_id + 2) % 3];
                        let pt_id2 = face_adj.pts[(edge.opp_pt_id + 1) % 3];

                        let pts = [pt_id1, pt_id2, support_point_id];
                        let adj = [edge.face_id, new_face_id + 1, new_face_id - 1];
                        new_face = Face::new(&self.vertices, pts, adj);

                        face_adj.adj[(edge.opp_pt_id + 1) % 3] = new_face_id;
                    }

                    self.faces.push(new_face.0);

                    if new_face.1 {
                        let pt = self.vertices[self.faces[new_face_id].pts[0]].point.coords;
                        let dist = self.faces[new_face_id].normal.dot(&pt);
                        if dist < curr_dist {
                            // FIXME: if we reach this point, there were issues due to
                            // numerical errors.
                            let points = face.closest_points(&self.vertices);
                            return Some((points.0, points.1, face.normal));
                        }

                        self.heap.push(FaceId::new(new_face_id, -dist)?);
                    }
                }
            }

            if first_new_face_id == self.faces.len() {
                // Something went very wrong because all the edges
                // from the silhouette belonged to deleted faces.
                return None;
            }

            self.faces[first_new_face_id].adj[2] = self.faces.len() - 1;
            self.faces.last_mut().unwrap().adj[1] = first_new_face_id;

            self.silhouette.clear();
            // self.check_topology(); // NOTE: for debugging only.

            niter += 1;
            if niter > 10000 {
                return None;
            }
        }

        let best_face = &self.faces[best_face_id.id];
        let points = best_face.closest_points(&self.vertices);
        return Some((points.0, points.1, best_face.normal));
    }

    fn compute_silhouette(&mut self, point: usize, id: usize, opp_pt_id: usize) {
        if !self.faces[id].deleted {
            if !self.faces[id].can_be_seen_by(&self.vertices, point, opp_pt_id) {
                self.silhouette.push(SilhouetteEdge::new(id, opp_pt_id));
            } else {
                self.faces[id].deleted = true;

                let adj_pt_id1 = (opp_pt_id + 2) % 3;
                let adj_pt_id2 = opp_pt_id;

                let adj1 = self.faces[id].adj[adj_pt_id1];
                let adj2 = self.faces[id].adj[adj_pt_id2];

                let adj_opp_pt_id1 =
                    self.faces[adj1].next_ccw_pt_id(self.faces[id].pts[adj_pt_id1]);
                let adj_opp_pt_id2 =
                    self.faces[adj2].next_ccw_pt_id(self.faces[id].pts[adj_pt_id2]);

                self.compute_silhouette(point, adj1, adj_opp_pt_id1);
                self.compute_silhouette(point, adj2, adj_opp_pt_id2);
            }
        }
    }

    #[allow(dead_code)]
    fn print_silhouette(&self) {
        print!("Silhouette points: ");
        for i in 0..self.silhouette.len() {
            let edge = &self.silhouette[i];
            let face = &self.faces[edge.face_id];

            if !face.deleted {
                print!(
                    "({}, {}) ",
                    face.pts[(edge.opp_pt_id + 2) % 3],
                    face.pts[(edge.opp_pt_id + 1) % 3]
                );
            }
        }
        println!("");
    }

    #[allow(dead_code)]
    fn check_topology(&self) {
        for i in 0..self.faces.len() {
            let face = &self.faces[i];
            if face.deleted {
                continue;
            }

            println!("checking {}-th face.", i);
            let adj1 = &self.faces[face.adj[0]];
            let adj2 = &self.faces[face.adj[1]];
            let adj3 = &self.faces[face.adj[2]];

            assert!(!adj1.deleted);
            assert!(!adj2.deleted);
            assert!(!adj3.deleted);

            assert!(face.pts[0] != face.pts[1]);
            assert!(face.pts[0] != face.pts[2]);
            assert!(face.pts[1] != face.pts[2]);

            assert!(adj1.contains_point(face.pts[0]));
            assert!(adj1.contains_point(face.pts[1]));

            assert!(adj2.contains_point(face.pts[1]));
            assert!(adj2.contains_point(face.pts[2]));

            assert!(adj3.contains_point(face.pts[2]));
            assert!(adj3.contains_point(face.pts[0]));

            let opp_pt_id1 = adj1.next_ccw_pt_id(face.pts[0]);
            let opp_pt_id2 = adj2.next_ccw_pt_id(face.pts[1]);
            let opp_pt_id3 = adj3.next_ccw_pt_id(face.pts[2]);

            assert!(!face.contains_point(adj1.pts[opp_pt_id1]));
            assert!(!face.contains_point(adj2.pts[opp_pt_id2]));
            assert!(!face.contains_point(adj3.pts[opp_pt_id3]));

            assert!(adj1.adj[(opp_pt_id1 + 1) % 3] == i);
            assert!(adj2.adj[(opp_pt_id2 + 1) % 3] == i);
            assert!(adj3.adj[(opp_pt_id3 + 1) % 3] == i);
        }
    }
}