1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
use na::{RealField, Unit};

use crate::math::{Isometry, Point, Vector};
use crate::shape::SupportMap;

/// A support mapping that is always equal to the origin, independently from its transform.
pub struct ConstantOrigin;

impl<N: RealField> SupportMap<N> for ConstantOrigin {
    #[inline]
    fn support_point(&self, _: &Isometry<N>, _: &Vector<N>) -> Point<N> {
        Point::origin()
    }

    #[inline]
    fn support_point_toward(&self, _: &Isometry<N>, _: &Unit<Vector<N>>) -> Point<N> {
        Point::origin()
    }

    #[inline]
    fn local_support_point(&self, _: &Vector<N>) -> Point<N> {
        Point::origin()
    }

    #[inline]
    fn local_support_point_toward(&self, _: &Unit<Vector<N>>) -> Point<N> {
        Point::origin()
    }
}

/// The Minkowski sum of a shape and a ball.
pub struct DilatedShape<'a, N: RealField, S: ?Sized + SupportMap<N>> {
    /// The shape involved in the Minkowski sum.
    pub shape: &'a S,
    /// The radius of the ball involved in the Minkoski sum.
    pub radius: N,
}

impl<'a, N: RealField, S: ?Sized + SupportMap<N>> SupportMap<N> for DilatedShape<'a, N, S> {
    #[inline]
    fn support_point(&self, m: &Isometry<N>, dir: &Vector<N>) -> Point<N> {
        self.support_point_toward(m, &Unit::new_normalize(*dir))
    }

    #[inline]
    fn support_point_toward(&self, m: &Isometry<N>, dir: &Unit<Vector<N>>) -> Point<N> {
        self.shape.support_point_toward(m, dir) + **dir * self.radius
    }

    #[inline]
    fn local_support_point(&self, dir: &Vector<N>) -> Point<N> {
        self.local_support_point_toward(&Unit::new_normalize(*dir))
    }

    #[inline]
    fn local_support_point_toward(&self, dir: &Unit<Vector<N>>) -> Point<N> {
        self.shape.local_support_point_toward(dir) + **dir * self.radius
    }
}