Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
use crate::math::{Point, Vector};
use na::{self, RealField};

/// Closest points between two lines.
///
/// The result, say `res`, is such that the closest points between both lines are
/// `orig1 + dir1 * res.0` and `orig2 + dir2 * res.1`.
#[inline]
pub fn closest_points_line_line_parameters<N: RealField>(
    orig1: &Point<N>,
    dir1: &Vector<N>,
    orig2: &Point<N>,
    dir2: &Vector<N>,
) -> (N, N) {
    let res =
        closest_points_line_line_parameters_eps(orig1, dir1, orig2, dir2, N::default_epsilon());
    (res.0, res.1)
}

/// Closest points between two lines with a custom tolerance epsilon.
///
/// The result, say `res`, is such that the closest points between both lines are
/// `orig1 + dir1 * res.0` and `orig2 + dir2 * res.1`. If the lines are parallel
/// then `res.2` is set to `true` and the returned closest points are `orig1` and
/// its projection on the second line.
#[inline]
pub fn closest_points_line_line_parameters_eps<N: RealField>(
    orig1: &Point<N>,
    dir1: &Vector<N>,
    orig2: &Point<N>,
    dir2: &Vector<N>,
    eps: N,
) -> (N, N, bool) {
    // Inspired by RealField-time collision detection by Christer Ericson.
    let r = *orig1 - *orig2;

    let a = dir1.norm_squared();
    let e = dir2.norm_squared();
    let f = dir2.dot(&r);

    let _0: N = na::zero();
    let _1: N = na::one();

    if a <= eps && e <= eps {
        (_0, _0, false)
    } else if a <= eps {
        (_0, f / e, false)
    } else {
        let c = dir1.dot(&r);
        if e <= eps {
            (-c / a, _0, false)
        } else {
            let b = dir1.dot(dir2);
            let ae = a * e;
            let bb = b * b;
            let denom = ae - bb;

            // Use absolute and ulps error to test collinearity.
            let parallel = denom <= eps || ulps_eq!(ae, bb);

            let s = if !parallel {
                (b * f - c * e) / denom
            } else {
                _0
            };

            (s, (b * s + f) / e, parallel)
        }
    }
}

// FIXME: can we re-used this for the segment/segment case?
/// Closest points between two segments.
#[inline]
pub fn closest_points_line_line<N: RealField>(
    orig1: &Point<N>,
    dir1: &Vector<N>,
    orig2: &Point<N>,
    dir2: &Vector<N>,
) -> (Point<N>, Point<N>) {
    let (s, t) = closest_points_line_line_parameters(orig1, dir1, orig2, dir2);
    (*orig1 + *dir1 * s, *orig2 + *dir2 * t)
}