Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
use crate::math::{Isometry, Point};
use crate::query::Contact;
use crate::shape::{Ball, FeatureId, Shape};
use na::{self, RealField, Unit};

/// Contact between a ball and a convex polyhedron.
///
/// This function panics if the input shape does not implement
/// both the ConvexPolyhedron and PointQuery traits.
#[inline]
pub fn contact_ball_convex_polyhedron<N: RealField>(
    ball_center1: &Point<N>,
    ball1: &Ball<N>,
    m2: &Isometry<N>,
    shape2: &(impl Shape<N> + ?Sized),
    prediction: N,
) -> Option<Contact<N>> {
    // NOTE: this code is mostly taken from the narrow-phase's BallConvexPolyhedronManifoldGenerator
    // after removal of all the code related to contact kinematics because it is not needed here
    // TODE: is there a way to refactor this to avoid duplication?.
    let poly2 = shape2
        .as_convex_polyhedron()
        .expect("The input shape does not implement the ConvexPolyhedron trait.");
    let pt_query2 = shape2
        .as_point_query()
        .expect("The input shape does not implement the PointQuery trait.");

    let (proj, f2) = pt_query2.project_point_with_feature(m2, &ball_center1);
    let world2 = proj.point;
    let dpt = world2 - ball_center1;

    let depth;
    let normal;
    if let Some((dir, dist)) = Unit::try_new_and_get(dpt, N::default_epsilon()) {
        if proj.is_inside {
            depth = dist + ball1.radius;
            normal = -dir;
        } else {
            depth = -dist + ball1.radius;
            normal = dir;
        }
    } else {
        if f2 == FeatureId::Unknown {
            // We cant do anything more at this point.
            return None;
        }

        depth = ball1.radius;
        normal = -poly2.feature_normal(f2);
    }

    if depth >= -prediction {
        let world1 = ball_center1 + normal.into_inner() * ball1.radius;
        return Some(Contact::new(world1, world2, normal, depth));
    }

    None
}

/// Contact between a convex polyhedron and a ball.
///
/// This function panics if the input shape does not implement
/// both the ConvexPolyhedron and PointQuery traits.
#[inline]
pub fn contact_convex_polyhedron_ball<N: RealField>(
    m1: &Isometry<N>,
    poly1: &(impl Shape<N> + ?Sized),
    ball_center2: &Point<N>,
    ball2: &Ball<N>,
    prediction: N,
) -> Option<Contact<N>> {
    let mut res = contact_ball_convex_polyhedron(ball_center2, ball2, m1, poly1, prediction);
    if let Some(c) = &mut res {
        c.flip()
    }
    res
}