1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
use crate::num::Bounded;
use std::mem;

#[cfg(feature = "dim3")]
use na::Point2;
use na::{self, RealField};

use crate::bounding_volume::AABB;
use crate::math::{Isometry, Point, Vector, DIM};
use crate::query::{Ray, RayCast, RayIntersection};
use crate::shape::{FeatureId, Segment};

impl<N: RealField> RayCast<N> for AABB<N> {
    fn toi_with_ray(&self, m: &Isometry<N>, ray: &Ray<N>, max_toi: N, solid: bool) -> Option<N> {
        let ls_ray = ray.inverse_transform_by(m);

        let mut tmin: N = na::zero();
        let mut tmax: N = max_toi;

        for i in 0usize..DIM {
            if ls_ray.dir[i].is_zero() {
                if ls_ray.origin[i] < self.mins[i] || ls_ray.origin[i] > self.maxs[i] {
                    return None;
                }
            } else {
                let _1: N = na::one();
                let denom = _1 / ls_ray.dir[i];
                let mut inter_with_near_plane = (self.mins[i] - ls_ray.origin[i]) * denom;
                let mut inter_with_far_plane = (self.maxs[i] - ls_ray.origin[i]) * denom;

                if inter_with_near_plane > inter_with_far_plane {
                    mem::swap(&mut inter_with_near_plane, &mut inter_with_far_plane)
                }

                tmin = tmin.max(inter_with_near_plane);
                tmax = tmax.min(inter_with_far_plane);

                if tmin > tmax {
                    // This covers the case where tmax is negative because tmin is
                    // initialized at zero.
                    return None;
                }
            }
        }

        if tmin.is_zero() && !solid {
            Some(tmax)
        } else {
            Some(tmin)
        }
    }

    #[inline]
    fn toi_and_normal_with_ray(
        &self,
        m: &Isometry<N>,
        ray: &Ray<N>,
        max_toi: N,
        solid: bool,
    ) -> Option<RayIntersection<N>> {
        let ls_ray = ray.inverse_transform_by(m);

        ray_aabb(self, &ls_ray, max_toi, solid).map(|(t, n, i)| {
            let feature = if i < 0 {
                FeatureId::Face(-i as usize - 1 + 3)
            } else {
                FeatureId::Face(i as usize - 1)
            };

            RayIntersection::new(t, m * n, feature)
        })
    }

    #[cfg(feature = "dim3")]
    fn toi_and_normal_and_uv_with_ray(
        &self,
        m: &Isometry<N>,
        ray: &Ray<N>,
        max_toi: N,
        solid: bool,
    ) -> Option<RayIntersection<N>> {
        do_toi_and_normal_and_uv_with_ray(m, self, ray, max_toi, solid)
    }
}

impl<N: RealField> AABB<N> {
    /// Computes the parameters of the two intersection points between a line and this AABB.
    ///
    /// The parameters are such that the point are given by `orig + dir * parameter`.
    /// Returns `None` if there is no intersection.
    #[inline]
    pub fn clip_line_parameters(&self, orig: &Point<N>, dir: &Vector<N>) -> Option<(N, N)> {
        clip_line(self, orig, dir).map(|clip| ((clip.0).0, (clip.1).0))
    }

    /// Computes the intersection segment between a line and this AABB.
    ///
    /// Returns `None` if there is no intersection.
    #[inline]
    pub fn clip_line(&self, orig: &Point<N>, dir: &Vector<N>) -> Option<Segment<N>> {
        clip_line(self, orig, dir)
            .map(|clip| Segment::new(orig + dir * (clip.0).0, orig + dir * (clip.1).0))
    }

    /// Computes the parameters of the two intersection points between a ray and this AABB.
    ///
    /// The parameters are such that the point are given by `ray.orig + ray.dir * parameter`.
    /// Returns `None` if there is no intersection.
    #[inline]
    pub fn clip_ray_parameters(&self, ray: &Ray<N>) -> Option<(N, N)> {
        self.clip_line_parameters(&ray.origin, &ray.dir)
            .and_then(|clip| {
                let t0 = clip.0;
                let t1 = clip.1;

                if t1 < N::zero() {
                    None
                } else {
                    Some((t0.max(N::zero()), t1))
                }
            })
    }

    /// Computes the intersection segment between a ray and this AABB.
    ///
    /// Returns `None` if there is no intersection.
    #[inline]
    pub fn clip_ray(&self, ray: &Ray<N>) -> Option<Segment<N>> {
        self.clip_ray_parameters(ray)
            .map(|clip| Segment::new(ray.point_at(clip.0), ray.point_at(clip.1)))
    }
}

#[cfg(feature = "dim3")]
fn do_toi_and_normal_and_uv_with_ray<N: RealField>(
    m: &Isometry<N>,
    aabb: &AABB<N>,
    ray: &Ray<N>,
    max_toi: N,
    solid: bool,
) -> Option<RayIntersection<N>> {
    if DIM != 3 {
        aabb.toi_and_normal_with_ray(m, ray, max_toi, solid)
    } else {
        let ls_ray = ray.inverse_transform_by(m);

        ray_aabb(aabb, &ls_ray, max_toi, solid).map(|(t, n, s)| {
            let pt = ls_ray.origin + ls_ray.dir * t;
            let dpt = pt - aabb.mins;
            let scale = aabb.maxs - aabb.mins;
            let id = s.abs();
            let gs_n = m * n;
            let feature = if s < 0 {
                FeatureId::Face(id as usize - 1 + 3)
            } else {
                FeatureId::Face(id as usize - 1)
            };

            if id == 1 {
                RayIntersection::new_with_uvs(
                    t,
                    gs_n,
                    feature,
                    Some(Point2::new(dpt[1] / scale[1], dpt[2] / scale[2])),
                )
            } else if id == 2 {
                RayIntersection::new_with_uvs(
                    t,
                    gs_n,
                    feature,
                    Some(Point2::new(dpt[2] / scale[2], dpt[0] / scale[0])),
                )
            } else {
                RayIntersection::new_with_uvs(
                    t,
                    gs_n,
                    feature,
                    Some(Point2::new(dpt[0] / scale[0], dpt[1] / scale[1])),
                )
            }
        })
    }
}

fn clip_line<N: RealField>(
    aabb: &AABB<N>,
    origin: &Point<N>,
    dir: &Vector<N>,
) -> Option<((N, Vector<N>, isize), (N, Vector<N>, isize))> {
    // NOTE: we don't start with tmin = 0 so we can return the correct normal
    // when the ray starts exactly on the object contour.

    let mut tmax: N = Bounded::max_value();
    let mut tmin: N = -tmax;
    let mut near_side = 0;
    let mut far_side = 0;
    let mut near_diag = false;
    let mut far_diag = false;

    for i in 0usize..DIM {
        if dir[i].is_zero() {
            if origin[i] < aabb.mins[i] || origin[i] > aabb.maxs[i] {
                return None;
            }
        } else {
            let _1: N = na::one();
            let denom = _1 / dir[i];
            let flip_sides;
            let mut inter_with_near_plane = (aabb.mins[i] - origin[i]) * denom;
            let mut inter_with_far_plane = (aabb.maxs[i] - origin[i]) * denom;

            if inter_with_near_plane > inter_with_far_plane {
                flip_sides = true;
                mem::swap(&mut inter_with_near_plane, &mut inter_with_far_plane)
            } else {
                flip_sides = false;
            }

            if inter_with_near_plane > tmin {
                tmin = inter_with_near_plane;
                near_side = if flip_sides {
                    -(i as isize + 1)
                } else {
                    i as isize + 1
                };
                near_diag = false;
            } else if inter_with_near_plane == tmin {
                near_diag = true;
            }

            if inter_with_far_plane < tmax {
                tmax = inter_with_far_plane;
                far_side = if !flip_sides {
                    -(i as isize + 1)
                } else {
                    i as isize + 1
                };
                far_diag = false;
            } else if inter_with_far_plane == tmax {
                far_diag = true;
            }

            if tmax < N::zero() || tmin > tmax {
                return None;
            }
        }
    }

    let near = if near_diag {
        (tmin, -dir.normalize(), near_side)
    } else {
        let mut normal = Vector::zeros();

        if near_side < 0 {
            normal[(-near_side - 1) as usize] = N::one();
        } else {
            normal[(near_side - 1) as usize] = -N::one();
        }

        (tmin, normal, near_side)
    };

    let far = if far_diag {
        (tmax, -dir.normalize(), far_side)
    } else {
        let mut normal = Vector::zeros();

        if far_side < 0 {
            normal[(-far_side - 1) as usize] = -N::one();
        } else {
            normal[(far_side - 1) as usize] = N::one();
        }

        (tmax, normal, far_side)
    };

    Some((near, far))
}

fn ray_aabb<N: RealField>(
    aabb: &AABB<N>,
    ray: &Ray<N>,
    max_toi: N,
    solid: bool,
) -> Option<(N, Vector<N>, isize)> {
    clip_line(aabb, &ray.origin, &ray.dir).and_then(|(near, far)| {
        if near.0 < N::zero() {
            if solid {
                Some((na::zero(), na::zero(), far.2))
            } else if far.0 <= max_toi {
                Some(far)
            } else {
                None
            }
        } else if near.0 <= max_toi {
            Some(near)
        } else {
            None
        }
    })
}