1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
use crate::bounding_volume::bounding_volume::BoundingVolume;
use crate::bounding_volume::AABB;
use crate::math::{Isometry, Point, Vector};
use crate::partitioning::{BestFirstVisitStatus, BestFirstVisitor};
use crate::query::{Ray, RayCast, TOIDispatcher, TOI};
use crate::shape::{CompositeShape, Shape};
use na::{self, RealField};

/// Time Of Impact of a composite shape with any other shape, under translational movement.
pub fn time_of_impact_composite_shape_shape<N, G1: ?Sized>(
    dispatcher: &dyn TOIDispatcher<N>,
    m1: &Isometry<N>,
    vel1: &Vector<N>,
    g1: &G1,
    m2: &Isometry<N>,
    vel2: &Vector<N>,
    g2: &dyn Shape<N>,
    max_toi: N,
    target_distance: N,
) -> Option<TOI<N>>
where
    N: RealField,
    G1: CompositeShape<N>,
{
    let mut visitor = CompositeShapeAgainstAnyTOIVisitor::new(
        dispatcher,
        m1,
        vel1,
        g1,
        m2,
        vel2,
        g2,
        max_toi,
        target_distance,
    );
    g1.bvh().best_first_search(&mut visitor).map(|res| res.1)
}

/// Time Of Impact of any shape with a composite shape, under translational movement.
pub fn time_of_impact_shape_composite_shape<N, G2: ?Sized>(
    dispatcher: &dyn TOIDispatcher<N>,
    m1: &Isometry<N>,
    vel1: &Vector<N>,
    g1: &dyn Shape<N>,
    m2: &Isometry<N>,
    vel2: &Vector<N>,
    g2: &G2,
    max_toi: N,
    target_distance: N,
) -> Option<TOI<N>>
where
    N: RealField,
    G2: CompositeShape<N>,
{
    time_of_impact_composite_shape_shape(
        dispatcher,
        m2,
        vel2,
        g2,
        m1,
        vel1,
        g1,
        max_toi,
        target_distance,
    )
    .map(|toi| toi.swapped())
}

struct CompositeShapeAgainstAnyTOIVisitor<'a, N: 'a + RealField, G1: ?Sized + 'a> {
    dispatcher: &'a dyn TOIDispatcher<N>,
    msum_shift: Vector<N>,
    msum_margin: Vector<N>,
    ray: Ray<N>,

    m1: &'a Isometry<N>,
    vel1: &'a Vector<N>,
    g1: &'a G1,
    m2: &'a Isometry<N>,
    vel2: &'a Vector<N>,
    g2: &'a dyn Shape<N>,
    max_toi: N,
    target_distance: N,
}

impl<'a, N, G1: ?Sized> CompositeShapeAgainstAnyTOIVisitor<'a, N, G1>
where
    N: RealField,
    G1: CompositeShape<N>,
{
    pub fn new(
        dispatcher: &'a dyn TOIDispatcher<N>,
        m1: &'a Isometry<N>,
        vel1: &'a Vector<N>,
        g1: &'a G1,
        m2: &'a Isometry<N>,
        vel2: &'a Vector<N>,
        g2: &'a dyn Shape<N>,
        max_toi: N,
        target_distance: N,
    ) -> CompositeShapeAgainstAnyTOIVisitor<'a, N, G1> {
        let ls_m2 = m1.inverse() * m2.clone();
        let ls_aabb2 = g2.aabb(&ls_m2).loosened(target_distance);

        CompositeShapeAgainstAnyTOIVisitor {
            dispatcher,
            msum_shift: -ls_aabb2.center().coords,
            msum_margin: ls_aabb2.half_extents(),
            ray: Ray::new(
                Point::origin(),
                m1.inverse_transform_vector(&(*vel2 - *vel1)),
            ),
            m1,
            vel1,
            g1,
            m2,
            vel2,
            g2,
            max_toi,
            target_distance,
        }
    }
}

impl<'a, N, G1: ?Sized> BestFirstVisitor<N, usize, AABB<N>>
    for CompositeShapeAgainstAnyTOIVisitor<'a, N, G1>
where
    N: RealField,
    G1: CompositeShape<N>,
{
    type Result = TOI<N>;

    #[inline]
    fn visit(
        &mut self,
        best: N,
        bv: &AABB<N>,
        data: Option<&usize>,
    ) -> BestFirstVisitStatus<N, Self::Result> {
        // Compute the minkowski sum of the two AABBs.
        let msum = AABB::new(
            bv.mins + self.msum_shift + (-self.msum_margin),
            bv.maxs + self.msum_shift + self.msum_margin,
        );

        // Compute the TOI.
        if let Some(toi) = msum.toi_with_ray(&Isometry::identity(), &self.ray, self.max_toi, true) {
            if toi > self.max_toi {
                return BestFirstVisitStatus::Stop;
            }

            let mut res = BestFirstVisitStatus::Continue {
                cost: toi,
                result: None,
            };

            if let Some(b) = data {
                if toi < best {
                    self.g1.map_part_at(*b, self.m1, &mut |m1, g1| {
                        if let Some(toi) = self
                            .dispatcher
                            .time_of_impact(
                                self.dispatcher,
                                m1,
                                self.vel1,
                                g1,
                                self.m2,
                                self.vel2,
                                self.g2,
                                self.max_toi,
                                self.target_distance,
                            )
                            .unwrap_or(None)
                        {
                            if toi.toi > self.max_toi {
                                res = BestFirstVisitStatus::Stop;
                            } else {
                                res = BestFirstVisitStatus::Continue {
                                    cost: toi.toi,
                                    result: Some(toi),
                                }
                            }
                        }
                    });
                }
            }

            res
        } else {
            BestFirstVisitStatus::Stop
        }
    }
}