Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
use crate::bounding_volume::BoundingVolume;
use crate::math::Isometry;
use crate::partitioning::{BestFirstVisitStatus, BestFirstVisitor};
use crate::query::{PointQuery, Ray, RayCast, RayIntersection};
use na::RealField;
use std::any::Any;

use crate::pipeline::{BroadPhase, BroadPhaseProxyHandle};

/// Bounding Volume Tree visitor collecting interferences with a given ray.
pub struct RayIntersectionCostFnVisitor<'a, 'b, N: 'a + RealField, T, BV>
where
    BV: BoundingVolume<N> + RayCast<N> + PointQuery<N> + Any + Send + Sync + Clone,
    T: Any + Send + Sync,
{
    /// Ray to be tested.
    ray: &'b Ray<N>,

    /// Maximum time-of-impact of the ray with the objects.
    max_toi: N,

    /// Used as a lookup to get the underlying data of the tree (uses `.query()`)
    /// This is required as the broad phase stores the data in a separate
    /// structure to the tree.
    /// TODO: Can this be made more generic?
    broad_phase: &'a dyn BroadPhase<N, BV, T>,

    /// The cost function to apply to each leaf nodes data.
    cost_fn: &'a dyn Fn(T, &'b Ray<N>, N) -> Option<(T, RayIntersection<N>)>,
}

impl<'a, 'b, N: RealField, T, BV> RayIntersectionCostFnVisitor<'a, 'b, N, T, BV>
where
    BV: BoundingVolume<N> + RayCast<N> + PointQuery<N> + Any + Send + Sync + Clone,
    T: Any + Send + Sync,
{
    /// Creates a new `RayIntersectionCostFnVisitor`.
    #[inline]
    pub fn new(
        ray: &'b Ray<N>,
        max_toi: N,
        broad_phase: &'a dyn BroadPhase<N, BV, T>,
        cost_fn: &'a dyn Fn(T, &'b Ray<N>, N) -> Option<(T, RayIntersection<N>)>,
    ) -> RayIntersectionCostFnVisitor<'a, 'b, N, T, BV> {
        RayIntersectionCostFnVisitor {
            ray,
            max_toi,
            broad_phase,
            cost_fn,
        }
    }
}

impl<'a, 'b, N, BV, T> BestFirstVisitor<N, BroadPhaseProxyHandle, BV>
    for RayIntersectionCostFnVisitor<'a, 'b, N, T, BV>
where
    N: RealField,
    BV: BoundingVolume<N> + RayCast<N> + PointQuery<N> + Any + Send + Sync + Clone,
    T: Any + Send + Sync + Clone,
{
    type Result = (T, RayIntersection<N>);

    #[inline]
    fn visit(
        &mut self,
        best_cost_so_far: N,
        bv: &BV,
        data: Option<&BroadPhaseProxyHandle>,
    ) -> BestFirstVisitStatus<N, Self::Result> {
        if let Some(rough_toi) =
            bv.toi_with_ray(&Isometry::identity(), self.ray, self.max_toi, true)
        {
            let mut res = BestFirstVisitStatus::Continue {
                cost: rough_toi,
                result: None,
            };

            // If the node has data then it is a leaf
            if let Some(data_handle) = data {
                // rough_toi is less than or equal the cost of any subnode.
                // Either: The ray origin is outside the bv, and so no point in the bv
                //   could have a lower cost than rough_toi.
                // Or: The ray origin is inside the bv, and rough_toi is 0
                // We only check the data if it may be better than best_cost_so_far
                if rough_toi < best_cost_so_far {
                    // Possibly the best. Look up underlying data of the node...
                    // TODO: Should this be `.expect()`?
                    if let Some((_, leaf_data)) = self.broad_phase.proxy(*data_handle) {
                        // and then run the cost function with the nodes data
                        if let Some(result) =
                            (self.cost_fn)(leaf_data.clone(), self.ray, self.max_toi)
                        {
                            res = BestFirstVisitStatus::Continue {
                                cost: result.1.toi,
                                result: Some(result),
                            };
                        }
                    }
                };
            }

            res
        } else {
            // No intersection so we can ignore all children
            BestFirstVisitStatus::Stop
        }
    }
}