1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
//!
//! Shape composed from the union of primitives.
//!

use crate::bounding_volume::{BoundingVolume, AABB};
use crate::math::Isometry;
use crate::partitioning::{BVHImpl, BVT};
use crate::query::{Contact, ContactKinematic, ContactPrediction, ContactPreprocessor};
use crate::shape::{CompositeShape, FeatureId, Shape, ShapeHandle};
use na::{self, RealField};
use std::mem;

/// A compound shape with an aabb bounding volume.
///
/// A compound shape is a shape composed of the union of several simpler shape. This is
/// the main way of creating a concave shape from convex parts. Each parts can have its own
/// delta transformation to shift or rotate it with regard to the other shapes.
#[derive(Clone)]
pub struct Compound<N: RealField> {
    shapes: Vec<(Isometry<N>, ShapeHandle<N>)>,
    bvt: BVT<usize, AABB<N>>,
    bvs: Vec<AABB<N>>,
    nbits: usize,
}

impl<N: RealField> Compound<N> {
    /// Builds a new compound shape.
    pub fn new(shapes: Vec<(Isometry<N>, ShapeHandle<N>)>) -> Compound<N> {
        let mut bvs = Vec::new();
        let mut leaves = Vec::new();

        for (i, &(ref delta, ref shape)) in shapes.iter().enumerate() {
            // loosen for better persistancy
            let bv = shape.as_ref().aabb(delta).loosened(na::convert(0.04f64));

            bvs.push(bv.clone());
            leaves.push((i, bv));

            if let Some(_comp) = shape.as_composite_shape() {
                panic!("Nested composite shapes are not allowed.");
            }
        }

        let nbits = mem::size_of::<usize>() * 8 - leaves.len().leading_zeros() as usize;
        let bvt = BVT::new_balanced(leaves);

        Compound {
            shapes: shapes,
            bvt: bvt,
            bvs: bvs,
            nbits,
        }
    }
}

impl<N: RealField> Compound<N> {
    /// The shapes of this compound shape.
    #[inline]
    pub fn shapes(&self) -> &[(Isometry<N>, ShapeHandle<N>)] {
        &self.shapes[..]
    }

    /// The optimization structure used by this compound shape.
    #[inline]
    pub fn bvt(&self) -> &BVT<usize, AABB<N>> {
        &self.bvt
    }

    /// The AABB of this compound in its local-space.
    #[inline]
    pub fn aabb(&self) -> &AABB<N> {
        self.bvt()
            .root_bounding_volume()
            .expect("An empty Compound has no AABB.")
    }

    /// The shapes bounding volumes.
    #[inline]
    pub fn bounding_volumes(&self) -> &[AABB<N>] {
        &self.bvs[..]
    }

    /// The AABB of the i-th shape compositing this compound.
    #[inline]
    pub fn aabb_at(&self, i: usize) -> &AABB<N> {
        &self.bvs[i]
    }

    /// Transforms a FeatureId of this compound into a pair containing the index of the subshape
    /// containing this feature, and the corresponding FeatureId on this subshape.
    pub fn subshape_feature_id(&self, fid: FeatureId) -> (usize, FeatureId) {
        match fid {
            FeatureId::Face(i) => (
                (i & !(usize::max_value() << self.nbits)),
                FeatureId::Face(i >> self.nbits),
            ),
            #[cfg(feature = "dim3")]
            FeatureId::Edge(i) => (
                (i & !(usize::max_value() << self.nbits)),
                FeatureId::Edge(i >> self.nbits),
            ),
            FeatureId::Vertex(i) => (
                (i & !(usize::max_value() << self.nbits)),
                FeatureId::Vertex(i >> self.nbits),
            ),
            FeatureId::Unknown => (0, FeatureId::Unknown),
        }
    }
}

impl<N: RealField> CompositeShape<N> for Compound<N> {
    #[inline]
    fn nparts(&self) -> usize {
        self.shapes.len()
    }

    #[inline(always)]
    fn map_part_at(
        &self,
        i: usize,
        m: &Isometry<N>,
        f: &mut dyn FnMut(&Isometry<N>, &dyn Shape<N>),
    ) {
        let elt = &self.shapes()[i];
        let pos = m * elt.0;

        f(&pos, elt.1.as_ref())
    }

    fn map_part_and_preprocessor_at(
        &self,
        i: usize,
        m: &Isometry<N>,
        _prediction: &ContactPrediction<N>,
        f: &mut dyn FnMut(&Isometry<N>, &dyn Shape<N>, &dyn ContactPreprocessor<N>),
    ) {
        let elt = &self.shapes()[i];
        let pos = m * elt.0;
        let proc = CompoundContactProcessor::new(&elt.0, i, self.nbits);

        f(&pos, elt.1.as_ref(), &proc)
    }

    #[inline]
    fn aabb_at(&self, i: usize) -> AABB<N> {
        self.bounding_volumes()[i].clone()
    }

    #[inline]
    fn bvh(&self) -> BVHImpl<N, usize, AABB<N>> {
        BVHImpl::BVT(&self.bvt)
    }
}

struct CompoundContactProcessor<'a, N: RealField> {
    part_pos: &'a Isometry<N>,
    part_id: usize,
    nbits: usize,
}

impl<'a, N: RealField> CompoundContactProcessor<'a, N> {
    pub fn new(part_pos: &'a Isometry<N>, part_id: usize, nbits: usize) -> Self {
        CompoundContactProcessor {
            part_pos,
            part_id,
            nbits,
        }
    }
}

impl<'a, N: RealField> ContactPreprocessor<N> for CompoundContactProcessor<'a, N> {
    fn process_contact(
        &self,
        _c: &mut Contact<N>,
        kinematic: &mut ContactKinematic<N>,
        is_first: bool,
    ) -> bool {
        // Fix the feature ID.
        let feature = if is_first {
            kinematic.feature1()
        } else {
            kinematic.feature2()
        };

        let actual_feature = match feature {
            FeatureId::Vertex(i) => FeatureId::Vertex((i << self.nbits) | self.part_id),
            #[cfg(feature = "dim3")]
            FeatureId::Edge(i) => FeatureId::Edge((i << self.nbits) | self.part_id),
            FeatureId::Face(i) => FeatureId::Face((i << self.nbits) | self.part_id),
            FeatureId::Unknown => return false,
        };

        if is_first {
            kinematic.set_feature1(actual_feature);
            // The contact kinematics must be expressed on the local frame of
            // the compound instead of the sub-shape.
            kinematic.transform1(self.part_pos);
        } else {
            kinematic.set_feature2(actual_feature);
            // The contact kinematics must be expressed on the local frame of
            // the compound instead of the sub-shape.
            kinematic.transform2(self.part_pos);
        }

        true
    }
}