Files
addr2line
adler
adler32
ahash
aho_corasick
angle
approx
backtrace
bitflags
blender
bytemuck
byteorder
case
cast_trait
cfg_if
chrono
color
color_quant
const_fn
crc32fast
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_skiplist
crossbeam_utils
darling
darling_core
darling_macro
dds
deflate
densevec
derive_builder
derive_builder_core
dot
downcast_rs
dual_quat
either
erased_serde
failure
failure_derive
fixedbitset
float_cmp
fnv
freeimage
freeimage_sys
freetype
freetype_gl_sys
freetype_sys
freetypegl
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
generational_arena
generic_array
getrandom
gif
gimli
glfw
glfw_sys
glin
glin_derive
glsl
half
harfbuzz
harfbuzz_ft_sys
harfbuzz_sys
hashbrown
human_sort
ident_case
image
indexmap
instant
itertools
itoa
jpeg_decoder
lazy_static
libc
libm
lock_api
log
lut_parser
matrixmultiply
memchr
memoffset
meshopt
miniz_oxide
monotonic_clock
mopa
mutiny_derive
na
nalgebra
base
geometry
linalg
ncollide3d
bounding_volume
interpolation
partitioning
pipeline
procedural
query
algorithms
closest_points
contact
distance
nonlinear_time_of_impact
point
proximity
ray
time_of_impact
visitors
shape
transformation
utils
nom
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
numext_constructor
numext_fixed_uint
numext_fixed_uint_core
numext_fixed_uint_hack
object
once_cell
parking_lot
parking_lot_core
pathfinding
pennereq
petgraph
pin_project_lite
pin_utils
png
polygon2
ppv_lite86
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_distr
raw_window_handle
rawpointer
rayon
rayon_core
rect_packer
regex
regex_syntax
retain_mut
rin
rin_app
rin_blender
rin_core
rin_gl
rin_graphics
rin_gui
rin_material
rin_math
rin_postpo
rin_scene
rin_util
rin_window
rinblender
rinecs
rinecs_derive
rinecs_derive_utils
ringui_derive
rustc_demangle
rusty_pool
ryu
scopeguard
seitan
seitan_derive
semver
semver_parser
serde
serde_derive
serde_json
shaderdata_derive
simba
slab
slice_of_array
slotmap
smallvec
std140_data
streaming_iterator
strsim
syn
synstructure
thiserror
thiserror_impl
thread_local
tiff
time
toml
typenum
unchecked_unwrap
unicode_xid
vec2
vec3
weezl
x11
zlib_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
use crate::math::{Isometry, Point, Vector};
use crate::shape::{ConvexPolygonalFeature, ConvexPolyhedron, FeatureId, SupportMap};
use crate::transformation;
use crate::utils::{self, SortedPair};
use na::{self, Point2, Point3, RealField, Unit};
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::f64;

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(PartialEq, Debug, Copy, Clone)]
struct Vertex {
    first_adj_face_or_edge: usize,
    num_adj_faces_or_edge: usize,
}

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(PartialEq, Debug, Copy, Clone)]
struct Edge<N: RealField> {
    vertices: Point2<usize>,
    faces: Point2<usize>,
    dir: Unit<Vector<N>>,
    deleted: bool,
}

impl<N: RealField> Edge<N> {
    fn other_triangle(&self, id: usize) -> usize {
        if id == self.faces[0] {
            self.faces[1]
        } else {
            self.faces[0]
        }
    }
}

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(PartialEq, Debug, Copy, Clone)]
struct Face<N: RealField> {
    first_vertex_or_edge: usize,
    num_vertices_or_edges: usize,
    normal: Unit<Vector<N>>,
}

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(PartialEq, Debug, Copy, Clone)]
struct Triangle<N: RealField> {
    vertices: Point3<usize>,
    edges: Point3<usize>,
    normal: Unit<Vector<N>>,
    parent_face: Option<usize>,
}

impl<N: RealField> Triangle<N> {
    fn next_edge_id(&self, id: usize) -> usize {
        for i in 0..3 {
            if self.edges[i] == id {
                return (i + 1) % 3;
            }
        }

        unreachable!()
    }
}

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(PartialEq, Debug, Clone)]
/// A convex polyhedron without degenerate faces.
pub struct ConvexHull<N: RealField> {
    points: Vec<Point<N>>,
    vertices: Vec<Vertex>,
    faces: Vec<Face<N>>,
    edges: Vec<Edge<N>>,
    // Faces adjascent to a vertex.
    faces_adj_to_vertex: Vec<usize>,
    // Edges adjascent to a vertex.
    edges_adj_to_vertex: Vec<usize>,
    // Edges adjascent to a face.
    edges_adj_to_face: Vec<usize>,
    // Vertices adjascent to a face.
    vertices_adj_to_face: Vec<usize>,
}

impl<N: RealField> ConvexHull<N> {
    /// Creates a new 2D convex polyhedron from an arbitrary set of points.
    ///
    /// This explicitly computes the convex hull of the given set of points. Use
    /// Returns `None` if the convex hull computation failed.
    pub fn try_from_points(points: &[Point<N>]) -> Option<ConvexHull<N>> {
        let hull = transformation::convex_hull(points);
        let indices: Vec<usize> = hull
            .flat_indices()
            .into_iter()
            .map(|i| i as usize)
            .collect();

        Self::try_new(hull.coords, &indices)
    }
    /// Attempts to create a new solid assumed to be convex from the set of points and indices.
    ///
    /// The given points and index information are assumed to describe a convex polyhedron.
    /// It it is not, weird results may be produced.
    ///
    /// # Return
    ///
    /// Retruns `None` if:
    ///
    ///   1. The given solid does not satisfy the euler characteristic.
    ///   2. The given solid contains degenerate edges/triangles.
    pub fn try_new(points: Vec<Point<N>>, indices: &[usize]) -> Option<ConvexHull<N>> {
        let eps = N::default_epsilon().sqrt();

        let mut vertices = Vec::new();
        let mut edges = Vec::<Edge<N>>::new();
        let mut faces = Vec::<Face<N>>::new();
        let mut triangles = Vec::new();
        let mut edge_map = HashMap::<SortedPair<usize>, usize>::new();

        let mut faces_adj_to_vertex = Vec::new();
        let mut edges_adj_to_vertex = Vec::new();
        let mut edges_adj_to_face = Vec::new();
        let mut vertices_adj_to_face = Vec::new();

        //// Euler characteristic.
        let nedges = points.len() + (indices.len() / 3) - 2;
        edges.reserve(nedges);

        /*
         *  Initialize triangles and edges adjascency information.
         */
        for vtx in indices.chunks(3) {
            let mut edges_id = Point3::origin();
            let face_id = triangles.len();

            for i1 in 0..3 {
                // Deal with edges.
                let i2 = (i1 + 1) % 3;
                let key = SortedPair::new(vtx[i1], vtx[i2]);

                match edge_map.entry(key) {
                    Entry::Occupied(e) => {
                        edges_id[i1] = *e.get();
                        edges[*e.get()].faces[1] = face_id
                    }
                    Entry::Vacant(e) => {
                        edges_id[i1] = *e.insert(edges.len());

                        if let Some(dir) =
                            Unit::try_new(points[vtx[i2]] - points[vtx[i1]], N::default_epsilon())
                        {
                            edges.push(Edge {
                                vertices: Point2::new(vtx[i1], vtx[i2]),
                                faces: Point2::new(face_id, 0),
                                dir,
                                deleted: false,
                            })
                        } else {
                            return None;
                        }
                    }
                }
            }

            let vertices = Point3::new(vtx[0], vtx[1], vtx[2]);
            let normal =
                utils::ccw_face_normal([&points[vtx[0]], &points[vtx[1]], &points[vtx[2]]])?;
            let triangle = Triangle {
                vertices,
                edges: edges_id,
                normal,
                parent_face: None,
            };

            triangles.push(triangle);
        }

        // Find edges that must be deleted.
        let mut num_valid_edges = 0;

        for e in &mut edges {
            let n1 = triangles[e.faces[0]].normal;
            let n2 = triangles[e.faces[1]].normal;
            if n1.dot(&*n2) > N::one() - eps {
                e.deleted = true;
            } else {
                num_valid_edges += 1;
            }
        }

        /*
         * Extract faces by following  contours.
         */
        for i in 0..triangles.len() {
            if triangles[i].parent_face.is_none() {
                for j1 in 0..3 {
                    if !edges[triangles[i].edges[j1]].deleted {
                        // Create a new face, setup its first edge/vertex and construct it.
                        let new_face_id = faces.len();
                        let mut new_face = Face {
                            first_vertex_or_edge: edges_adj_to_face.len(),
                            num_vertices_or_edges: 1,
                            normal: triangles[i].normal,
                        };

                        edges_adj_to_face.push(triangles[i].edges[j1]);
                        vertices_adj_to_face.push(triangles[i].vertices[j1]);

                        let j2 = (j1 + 1) % 3;
                        let start_vertex = triangles[i].vertices[j1];

                        // NOTE: variables ending with _id are identifier on the
                        // fields of a triangle. Other variables are identifier on
                        // the triangles/edges/vertices arrays.
                        let mut curr_triangle = i;
                        let mut curr_edge_id = j2;

                        while triangles[curr_triangle].vertices[curr_edge_id] != start_vertex {
                            let curr_edge = triangles[curr_triangle].edges[curr_edge_id];
                            let curr_vertex = triangles[curr_triangle].vertices[curr_edge_id];
                            triangles[curr_triangle].parent_face = Some(new_face_id);

                            if !edges[curr_edge].deleted {
                                edges_adj_to_face.push(curr_edge);
                                vertices_adj_to_face.push(curr_vertex);
                                new_face.num_vertices_or_edges += 1;

                                curr_edge_id = (curr_edge_id + 1) % 3;
                            } else {
                                // Find adjascent edge on the next triange.
                                curr_triangle = edges[curr_edge].other_triangle(curr_triangle);
                                curr_edge_id = triangles[curr_triangle].next_edge_id(curr_edge);
                                assert!(
                                    triangles[curr_triangle].vertices[curr_edge_id] == curr_vertex
                                );
                            }
                        }

                        if new_face.num_vertices_or_edges > 2 {
                            faces.push(new_face);
                        }
                        break;
                    }
                }
            }
        }

        // Update face ids inside edges so that they point to the faces instead of the triangles.
        for e in &mut edges {
            if let Some(fid) = triangles[e.faces[0]].parent_face {
                e.faces[0] = fid;
            }

            if let Some(fid) = triangles[e.faces[1]].parent_face {
                e.faces[1] = fid;
            }
        }

        /*
         * Initialize vertices
         */
        let empty_vertex = Vertex {
            first_adj_face_or_edge: 0,
            num_adj_faces_or_edge: 0,
        };

        vertices.resize(points.len(), empty_vertex);

        // First, find their multiplicities.
        for face in &faces {
            let first_vid = face.first_vertex_or_edge;
            let last_vid = face.first_vertex_or_edge + face.num_vertices_or_edges;

            for i in &vertices_adj_to_face[first_vid..last_vid] {
                vertices[*i].num_adj_faces_or_edge += 1;
            }
        }

        // Now, find their starting id.
        let mut total_num_adj_faces = 0;
        for v in &mut vertices {
            v.first_adj_face_or_edge = total_num_adj_faces;
            total_num_adj_faces += v.num_adj_faces_or_edge;
        }
        faces_adj_to_vertex.resize(total_num_adj_faces, 0);
        edges_adj_to_vertex.resize(total_num_adj_faces, 0);

        // Reset the number of adjascent faces.
        // It will be set againt to the right value as
        // the adjascent face list is filled.
        for v in &mut vertices {
            v.num_adj_faces_or_edge = 0;
        }

        for face_id in 0..faces.len() {
            let face = &faces[face_id];
            let first_vid = face.first_vertex_or_edge;
            let last_vid = face.first_vertex_or_edge + face.num_vertices_or_edges;

            for vid in first_vid..last_vid {
                let v = &mut vertices[vertices_adj_to_face[vid]];
                faces_adj_to_vertex[v.first_adj_face_or_edge + v.num_adj_faces_or_edge] = face_id;
                edges_adj_to_vertex[v.first_adj_face_or_edge + v.num_adj_faces_or_edge] =
                    edges_adj_to_face[vid];
                v.num_adj_faces_or_edge += 1;
            }
        }

        let mut num_valid_vertices = 0;

        for v in &vertices {
            if v.num_adj_faces_or_edge != 0 {
                num_valid_vertices += 1;
            }
        }

        // Check that the Euler characteristic is respected.
        if num_valid_vertices + faces.len() - num_valid_edges != 2 {
            None
        } else {
            let res = ConvexHull {
                points,
                vertices,
                faces,
                edges,
                faces_adj_to_vertex,
                edges_adj_to_vertex,
                edges_adj_to_face,
                vertices_adj_to_face,
            };

            // FIXME: for debug.
            // res.check_geometry();

            Some(res)
        }
    }

    /// Verify if this convex polyhedron is actually convex.
    #[inline]
    pub fn check_geometry(&self) {
        for face in &self.faces {
            let p0 = self.points[self.vertices_adj_to_face[face.first_vertex_or_edge]];

            for v in &self.points {
                assert!((v - p0).dot(face.normal.as_ref()) <= N::default_epsilon());
            }
        }
    }

    /// The set of vertices of this convex polyhedron.
    #[inline]
    pub fn points(&self) -> &[Point<N>] {
        &self.points[..]
    }

    /// Checks that the given direction in world-space is on the tangent cone of the given `feature`.
    pub fn tangent_cone_contains_dir(
        &self,
        feature: FeatureId,
        m: &Isometry<N>,
        dir: &Unit<Vector<N>>,
    ) -> bool {
        let ls_dir = m.inverse_transform_unit_vector(dir);

        match feature {
            FeatureId::Face(id) => ls_dir.dot(&self.faces[id].normal) <= N::zero(),
            FeatureId::Edge(id) => {
                let edge = &self.edges[id];
                ls_dir.dot(&self.faces[edge.faces[0]].normal) <= N::zero()
                    && ls_dir.dot(&self.faces[edge.faces[1]].normal) <= N::zero()
            }
            FeatureId::Vertex(id) => {
                let vertex = &self.vertices[id];
                let first = vertex.first_adj_face_or_edge;
                let last = vertex.first_adj_face_or_edge + vertex.num_adj_faces_or_edge;

                for face in &self.faces_adj_to_vertex[first..last] {
                    if ls_dir.dot(&self.faces[*face].normal) > N::zero() {
                        return false;
                    }
                }

                true
            }
            FeatureId::Unknown => false,
        }
    }

    fn support_feature_id_toward_eps(&self, local_dir: &Unit<Vector<N>>, eps: N) -> FeatureId {
        let (seps, ceps) = eps.sin_cos();
        let support_pt_id = utils::point_cloud_support_point_id(local_dir.as_ref(), &self.points);
        let vertex = &self.vertices[support_pt_id];

        // Check faces.
        for i in 0..vertex.num_adj_faces_or_edge {
            let face_id = self.faces_adj_to_vertex[vertex.first_adj_face_or_edge + i];
            let face = &self.faces[face_id];

            if face.normal.dot(local_dir.as_ref()) >= ceps {
                return FeatureId::Face(face_id);
            }
        }

        // Check edges.
        for i in 0..vertex.num_adj_faces_or_edge {
            let edge_id = self.edges_adj_to_vertex[vertex.first_adj_face_or_edge + i];
            let edge = &self.edges[edge_id];

            if edge.dir.dot(local_dir.as_ref()).abs() <= seps {
                return FeatureId::Edge(edge_id);
            }
        }

        // The vertex is the support feature.
        FeatureId::Vertex(support_pt_id)
    }
}

impl<N: RealField> SupportMap<N> for ConvexHull<N> {
    #[inline]
    fn local_support_point(&self, dir: &Vector<N>) -> Point<N> {
        utils::point_cloud_support_point(dir, self.points())
    }
}

impl<N: RealField> ConvexPolyhedron<N> for ConvexHull<N> {
    fn vertex(&self, id: FeatureId) -> Point<N> {
        self.points[id.unwrap_vertex()]
    }

    fn edge(&self, id: FeatureId) -> (Point<N>, Point<N>, FeatureId, FeatureId) {
        let edge = &self.edges[id.unwrap_edge()];
        let v1 = edge.vertices[0];
        let v2 = edge.vertices[1];

        (
            self.points[v1],
            self.points[v2],
            FeatureId::Vertex(v1),
            FeatureId::Vertex(v2),
        )
    }

    fn face(&self, id: FeatureId, out: &mut ConvexPolygonalFeature<N>) {
        out.clear();

        let face = &self.faces[id.unwrap_face()];
        let first_vertex = face.first_vertex_or_edge;
        let last_vertex = face.first_vertex_or_edge + face.num_vertices_or_edges;

        for i in first_vertex..last_vertex {
            let vid = self.vertices_adj_to_face[i];
            let eid = self.edges_adj_to_face[i];
            out.push(self.points[vid], FeatureId::Vertex(vid));
            out.push_edge_feature_id(FeatureId::Edge(eid));
        }

        out.set_normal(face.normal);
        out.set_feature_id(id);
        out.recompute_edge_normals();
    }

    fn feature_normal(&self, feature: FeatureId) -> Unit<Vector<N>> {
        match feature {
            FeatureId::Face(id) => self.faces[id].normal,
            FeatureId::Edge(id) => {
                let edge = &self.edges[id];
                Unit::new_normalize(
                    *self.faces[edge.faces[0]].normal + *self.faces[edge.faces[1]].normal,
                )
            }
            FeatureId::Vertex(id) => {
                let vertex = &self.vertices[id];
                let first = vertex.first_adj_face_or_edge;
                let last = vertex.first_adj_face_or_edge + vertex.num_adj_faces_or_edge;
                let mut normal = Vector::zeros();

                for face in &self.faces_adj_to_vertex[first..last] {
                    normal += *self.faces[*face].normal
                }

                Unit::new_normalize(normal)
            }
            FeatureId::Unknown => panic!("Invalid feature ID: {:?}", feature),
        }
    }

    fn support_face_toward(
        &self,
        m: &Isometry<N>,
        dir: &Unit<Vector<N>>,
        out: &mut ConvexPolygonalFeature<N>,
    ) {
        let ls_dir = m.inverse_transform_vector(dir);
        let mut best_face = 0;
        let mut max_dot = self.faces[0].normal.dot(&ls_dir);

        for i in 1..self.faces.len() {
            let face = &self.faces[i];
            let dot = face.normal.dot(&ls_dir);

            if dot > max_dot {
                max_dot = dot;
                best_face = i;
            }
        }

        self.face(FeatureId::Face(best_face), out);
        out.transform_by(m);
    }

    fn support_feature_toward(
        &self,
        transform: &Isometry<N>,
        dir: &Unit<Vector<N>>,
        angle: N,
        out: &mut ConvexPolygonalFeature<N>,
    ) {
        out.clear();
        let local_dir = transform.inverse_transform_unit_vector(dir);
        let fid = self.support_feature_id_toward_eps(&local_dir, angle);

        match fid {
            FeatureId::Vertex(_) => {
                let v = self.vertex(fid);
                out.push(v, fid);
                out.set_feature_id(fid);
            }
            FeatureId::Edge(_) => {
                let edge = self.edge(fid);
                out.push(edge.0, edge.2);
                out.push(edge.1, edge.3);
                out.set_feature_id(fid);
                out.push_edge_feature_id(fid);
            }
            FeatureId::Face(_) => self.face(fid, out),
            FeatureId::Unknown => unreachable!(),
        }

        out.transform_by(transform);
    }

    fn support_feature_id_toward(&self, local_dir: &Unit<Vector<N>>) -> FeatureId {
        let eps: N = na::convert(f64::consts::PI / 180.0);
        self.support_feature_id_toward_eps(local_dir, eps)
    }
}