1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
//! 2d line strip, 3d polyline.

use crate::bounding_volume::{self, BoundingVolume, AABB};
use crate::math::{Isometry, Point, Vector, DIM};
use crate::partitioning::{BVHImpl, BVT};
use crate::query::{
    Contact, ContactKinematic, ContactPrediction, ContactPreprocessor, LocalShapeApproximation,
    NeighborhoodGeometry,
};
use crate::shape::{CompositeShape, DeformableShape, DeformationsType, FeatureId, Segment, Shape};
use na::{self, Point2, RealField, Unit};
use std::iter;
use std::ops::Range;
use std::slice;

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Clone)]
struct DeformationInfos<N: RealField> {
    margin: N,
    curr_timestamp: usize,
    timestamps: Vec<usize>,
    ref_vertices: Vec<Point<N>>,
    seg_to_update: Vec<usize>,
}

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Clone)]
pub struct PolylineEdge<N: RealField> {
    pub indices: Point2<usize>,
    bvt_leaf: usize,
    pub normal: Option<Unit<Vector<N>>>, // FIXME: useless in 3D
}

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Clone)]
pub struct PolylineVertex {
    pub adj_edges: Range<usize>,
    pub adj_vertices: Range<usize>,
}

/// A polygonal line.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Clone)]
pub struct Polyline<N: RealField> {
    bvt: BVT<usize, AABB<N>>,
    points: Vec<Point<N>>,
    vertices: Vec<PolylineVertex>,
    edges: Vec<PolylineEdge<N>>,
    adj_edge_list: Vec<usize>,
    // NOTE: the adj_vertex_list could be deduced from the adj_edge_list.
    adj_vertex_list: Vec<usize>,
    deformations: DeformationInfos<N>,
    oriented: bool, // FIXME: useless in 3D
}

impl<N: RealField> Polyline<N> {
    /// Builds a new polyline.
    pub fn new(points: Vec<Point<N>>, indices: Option<Vec<Point2<usize>>>) -> Polyline<N> {
        let indices = indices.unwrap_or(
            (0..)
                .map(|i| Point2::new(i, i + 1))
                .take(points.len() - 1)
                .collect(),
        );
        let mut leaves = Vec::with_capacity(indices.len());
        let mut vertices: Vec<PolylineVertex> = iter::repeat(PolylineVertex {
            adj_edges: 0..0,
            adj_vertices: 0..0,
        })
        .take(points.len())
        .collect();
        let mut edges = Vec::with_capacity(indices.len());

        let adj_edge_list = Self::adj_edge_list(&indices, &mut vertices);
        let adj_vertex_list = Self::adj_vertex_list(&indices, &mut vertices);

        {
            let is = &*indices;

            for (i, is) in is.iter().enumerate() {
                let segment = Segment::new(points[is.x], points[is.y]);
                let normal = segment.normal();

                let bv = segment.local_aabb();
                leaves.push((i, bv.clone()));
                edges.push(PolylineEdge {
                    indices: *is,
                    bvt_leaf: 0, // Will be set later.
                    normal,
                })
            }
        }

        let bvt = BVT::new_balanced(leaves);

        // Set edge.bvt_leaf
        for (i, leaf) in bvt.leaves().iter().enumerate() {
            edges[*leaf.data()].bvt_leaf = i;
        }

        let deformations = DeformationInfos {
            margin: na::convert(0.1), // FIXME: find a better way to define the margin.
            curr_timestamp: 0,
            timestamps: Vec::new(),
            ref_vertices: Vec::new(),
            seg_to_update: Vec::new(),
        };

        Polyline {
            bvt,
            points,
            deformations,
            vertices,
            edges,
            adj_edge_list,
            adj_vertex_list,
            oriented: false,
        }
    }

    fn adj_vertex_list(edges: &[Point2<usize>], vertices: &mut [PolylineVertex]) -> Vec<usize> {
        let mut num_neighbors: Vec<usize> = iter::repeat(0).take(vertices.len()).collect();

        for e in edges {
            num_neighbors[e.x] += 1;
            num_neighbors[e.y] += 1;
        }

        let mut total_num_nbh = 0;

        for (num_nbh, vtx) in num_neighbors.iter().zip(vertices.iter_mut()) {
            vtx.adj_vertices = total_num_nbh..total_num_nbh + num_nbh;
            total_num_nbh += num_nbh;
        }

        let mut adj_vertex_list: Vec<usize> = iter::repeat(0).take(total_num_nbh).collect();

        // Build the adjacency list.
        for n in &mut num_neighbors {
            *n = 0;
        }

        for e in edges.iter() {
            adj_vertex_list[vertices[e.x].adj_vertices.start + num_neighbors[e.x]] = e.y;
            adj_vertex_list[vertices[e.y].adj_vertices.start + num_neighbors[e.y]] = e.x;

            num_neighbors[e.x] += 1;
            num_neighbors[e.y] += 1;
        }

        adj_vertex_list
    }

    fn adj_edge_list(edges: &[Point2<usize>], vertices: &mut [PolylineVertex]) -> Vec<usize> {
        let mut num_neighbors: Vec<usize> = iter::repeat(0).take(vertices.len()).collect();

        for idx in edges {
            num_neighbors[idx.x] += 1;
            num_neighbors[idx.y] += 1;
        }

        let mut total_num_nbh = 0;

        for (num_nbh, vtx) in num_neighbors.iter().zip(vertices.iter_mut()) {
            vtx.adj_edges = total_num_nbh..total_num_nbh + num_nbh;
            total_num_nbh += num_nbh;
        }

        let mut adj_edge_list: Vec<usize> = iter::repeat(0).take(total_num_nbh).collect();

        // Build the adjacency list.
        for n in &mut num_neighbors {
            *n = 0;
        }

        for (i, idx) in edges.iter().enumerate() {
            adj_edge_list[vertices[idx.x].adj_edges.start + num_neighbors[idx.x]] = i;
            adj_edge_list[vertices[idx.y].adj_edges.start + num_neighbors[idx.y]] = i;

            num_neighbors[idx.x] += 1;
            num_neighbors[idx.y] += 1;
        }

        adj_edge_list
    }

    /// A polyline shaped like a quad, in the x-y plane.
    pub fn quad(nx: usize, ny: usize) -> Self {
        let mut vertices = Vec::new();
        let step_x = N::one() / na::convert(nx as f64);
        let step_y = N::one() / na::convert(ny as f64);
        let _0_5: N = na::convert(0.5);

        for i in 0..=nx {
            vertices.push(xy_point(step_x * na::convert(i as f64) - _0_5, -_0_5));
        }
        for j in 1..=ny {
            vertices.push(xy_point(_0_5, step_y * na::convert(j as f64) - _0_5));
        }
        for i in 1..=nx {
            vertices.push(xy_point(_0_5 - step_x * na::convert(i as f64), _0_5));
        }
        for j in 1..ny {
            vertices.push(xy_point(-_0_5, _0_5 - step_y * na::convert(j as f64)));
        }

        let mut indices: Vec<_> = (0..)
            .map(|i| Point2::new(i, i + 1))
            .take(vertices.len() - 1)
            .collect();
        indices.push(Point2::new(vertices.len() - 1, 0));

        Polyline::new(vertices, Some(indices))
    }

    /// The polyline's AABB.
    #[inline]
    pub fn aabb(&self) -> &AABB<N> {
        self.bvt
            .root_bounding_volume()
            .expect("An empty Polyline has no AABB.")
    }

    /// The points of this polyline.
    #[inline]
    pub fn points(&self) -> &[Point<N>] {
        &self.points
    }

    /// The edges of this polyline.
    #[inline]
    pub fn edges(&self) -> &[PolylineEdge<N>] {
        &self.edges
    }

    /// Whether this polyline is considered is oriented or not.
    ///
    /// By default a polyline is not oriented.
    #[inline]
    pub fn oriented(&self) -> bool {
        self.oriented
    }

    /// Whether this polyline is considered as oriented or not.
    ///
    /// This is determined at the initialization of the polyline.
    #[inline]
    pub fn set_oriented(&mut self, oriented: bool) {
        self.oriented = oriented
    }

    /// Face containing feature.
    #[inline]
    pub fn edge_containing_feature(&self, id: FeatureId) -> usize {
        match id {
            FeatureId::Vertex(i) => self.adj_edge_list[self.vertices[i].adj_edges.start],
            #[cfg(feature = "dim3")]
            FeatureId::Edge(i) => i,
            FeatureId::Face(i) => i % self.edges.len(),
            _ => panic!("Feature ID cannot be unknown."),
        }
    }

    /// Converts a segment FeatureId to a polyline FeatureId.
    #[inline]
    pub fn segment_feature_to_polyline_feature(
        &self,
        edge_id: usize,
        feature: FeatureId,
    ) -> FeatureId {
        let edge = &self.edges[edge_id];
        match feature {
            FeatureId::Vertex(i) => FeatureId::Vertex(edge.indices[i]),
            #[cfg(feature = "dim3")]
            FeatureId::Edge(_) => FeatureId::Edge(edge_id),
            FeatureId::Face(i) => {
                if i == 0 {
                    FeatureId::Face(edge_id)
                } else {
                    FeatureId::Face(edge_id + self.edges.len())
                }
            }
            FeatureId::Unknown => FeatureId::Unknown,
        }
    }

    /// The segment of the `i`-th edge on this polyline.
    #[inline]
    pub fn edge_segment(&self, i: usize) -> Segment<N> {
        let edge = &self.edges[i];
        Segment::new(self.points[edge.indices.x], self.points[edge.indices.y])
    }

    /// Gets the i-th polyline element.
    #[inline]
    pub fn segment_at(&self, i: usize) -> Segment<N> {
        let idx = self.edges[i].indices;
        Segment::new(self.points[idx.x], self.points[idx.y])
    }

    /// The optimization structure used by this polyline.
    #[inline]
    pub fn bvt(&self) -> &BVT<usize, AABB<N>> {
        &self.bvt
    }

    /// Tests that the given `dir` is on the tangent cone of the `i`th vertex
    /// of this polyline.
    #[cfg(feature = "dim3")]
    pub fn vertex_tangent_cone_contains_dir(
        &self,
        _i: usize,
        _deformations: Option<&[N]>,
        _dir: &Unit<Vector<N>>,
    ) -> bool {
        return false;
    }

    /// Tests that the given `dir` is on the tangent cone of the `i`th vertex
    /// of this polyline.
    #[cfg(feature = "dim2")]
    pub fn vertex_tangent_cone_contains_dir(
        &self,
        i: usize,
        deformations: Option<&[N]>,
        dir: &Unit<Vector<N>>,
    ) -> bool {
        if !self.oriented {
            return false;
        }

        let v = &self.vertices[i];

        if let Some(coords) = deformations {
            for adj_edge in &self.adj_edge_list[v.adj_edges.clone()] {
                let indices = self.edges[*adj_edge].indices * DIM;
                let seg = Segment::new(
                    Point::from_slice(&coords[indices.x..indices.x + DIM]),
                    Point::from_slice(&coords[indices.y..indices.y + DIM]),
                );

                if seg.scaled_normal().dot(dir) > N::zero() {
                    return false;
                }
            }
        } else {
            for adj_edge in &self.adj_edge_list[v.adj_edges.clone()] {
                let edge = &self.edges[*adj_edge];

                if let Some(ref n) = edge.normal {
                    if n.dot(dir) > N::zero() {
                        return false;
                    }
                }
            }
        }

        true
    }

    /// Applies in-place a transformation to this polyline.
    pub fn transform_by(&mut self, transform: &Isometry<N>) {
        for pt in &mut self.points {
            *pt = transform * *pt
        }
    }

    /// Applies a transformation to this polyline.
    #[inline]
    pub fn transformed(mut self, t: &Isometry<N>) -> Self {
        self.transform_by(t);
        self
    }

    /// Applies in-place a non-uniform scale to this polyline.
    pub fn scale_by(&mut self, scale: &Vector<N>) {
        for pt in &mut self.points {
            pt.coords.component_mul_assign(scale)
        }
    }

    /// Applies a non-uniform scale to this polyline.
    #[inline]
    pub fn scaled(mut self, s: &Vector<N>) -> Self {
        self.scale_by(s);
        self
    }

    /// Returns `true` if the given feature is a FeatureId::Face and
    /// identifies a backface of this polyline.
    #[inline]
    pub fn is_backface(&self, feature: FeatureId) -> bool {
        if let FeatureId::Face(i) = feature {
            i >= self.edges.len()
        } else {
            false
        }
    }

    /// Tests that the given `dir` is on the polar of the tangent cone of the `i`th vertex
    /// of this polyline.
    pub fn vertex_tangent_cone_polar_contains_dir(
        &self,
        i: usize,
        dir: &Unit<Vector<N>>,
        sin_ang_tol: N,
    ) -> bool {
        let v = &self.vertices[i];

        for adj_vtx in &self.adj_vertex_list[v.adj_vertices.clone()] {
            let edge_dir = self.points[i] - self.points[*adj_vtx];

            // FIXME: don't compute the norm every time.
            if edge_dir.dot(dir) < -sin_ang_tol * edge_dir.norm() {
                return false;
            }
        }

        true
    }

    /// Tests that the given `dir` is on the tangent cone of the `i`th edge
    /// of this polyline.
    #[cfg(feature = "dim3")]
    pub fn edge_tangent_cone_contains_dir(
        &self,
        _i: usize,
        _deformations: Option<&[N]>,
        _dir: &Unit<Vector<N>>,
    ) -> bool {
        return false;
    }

    /// Tests that the given `dir` is on the tangent cone of the `i`th edge
    /// of this polyline.
    #[cfg(feature = "dim2")]
    pub fn edge_tangent_cone_contains_dir(
        &self,
        i: usize,
        deformations: Option<&[N]>,
        dir: &Unit<Vector<N>>,
    ) -> bool {
        if !self.oriented {
            return false;
        }

        let normal;

        if let Some(coords) = deformations {
            let indices = self.edges[i % self.edges.len()].indices * DIM;
            let seg = Segment::new(
                Point::from_slice(&coords[indices.x..indices.x + DIM]),
                Point::from_slice(&coords[indices.y..indices.y + DIM]),
            );

            if i >= self.edges.len() {
                normal = -seg.scaled_normal();
            } else {
                normal = seg.scaled_normal();
            }
        } else {
            if i >= self.edges.len() {
                normal = -self.edges[i - self.edges.len()]
                    .normal
                    .map(|n| n.into_inner())
                    .unwrap_or(Vector::zeros());
            } else {
                normal = self.edges[i]
                    .normal
                    .map(|n| n.into_inner())
                    .unwrap_or(Vector::zeros());
            }
        }

        normal.dot(dir) <= N::zero()
    }

    /// Tests whether the polar of the tangent cone of the i-th edge of this polyline
    /// contains the direction `dir` considering the cosinus of an angular tolerance `cos_ang_tol`.
    pub fn edge_tangent_cone_polar_contains_dir(
        &self,
        i: usize,
        dir: &Unit<Vector<N>>,
        cos_ang_tol: N,
    ) -> bool {
        let normal;

        if i >= self.edges.len() {
            normal = -self.edges[i - self.edges.len()]
                .normal
                .map(|n| n.into_inner())
                .unwrap_or(Vector::zeros());
        } else {
            normal = self.edges[i]
                .normal
                .map(|n| n.into_inner())
                .unwrap_or(Vector::zeros());
        }

        normal.dot(dir) >= cos_ang_tol
    }

    /// (Not yet implemented) Tests whether the polar of the tangent cone of the specified feature of
    /// this polyline contains the direction `dir` considering the sinus and cosinus of an angular tolerance.
    pub fn tangent_cone_polar_contains_dir(
        &self,
        _feature: FeatureId,
        _dir: &Unit<Vector<N>>,
        _sin_ang_tol: N,
        _cos_ang_tol: N,
    ) -> bool {
        unimplemented!()
        /*
        match feature {
            FeatureId::Edge(i) => self.edge_tangent_cone_polar_contains_dir(i, dir, cos_ang_tol),
            FeatureId::Vertex(i) => self.vertex_tangent_cone_polar_contains_dir(i, dir, sin_ang_tol),
            FeatureId::Unknown => false
        }
        */
    }

    fn init_deformation_infos(&mut self) -> bool {
        if self.deformations.ref_vertices.is_empty() {
            self.deformations.timestamps = iter::repeat(0).take(self.edges.len()).collect();
            self.deformations.ref_vertices = self.points.clone();
            true
        } else {
            false
        }
    }
}

impl<N: RealField> CompositeShape<N> for Polyline<N> {
    #[inline]
    fn nparts(&self) -> usize {
        self.edges.len()
    }

    #[inline(always)]
    fn map_part_at(
        &self,
        i: usize,
        m: &Isometry<N>,
        f: &mut dyn FnMut(&Isometry<N>, &dyn Shape<N>),
    ) {
        let element = self.segment_at(i);
        f(m, &element)
    }

    fn map_part_and_preprocessor_at(
        &self,
        i: usize,
        m: &Isometry<N>,
        prediction: &ContactPrediction<N>,
        f: &mut dyn FnMut(&Isometry<N>, &dyn Shape<N>, &dyn ContactPreprocessor<N>),
    ) {
        let element = self.segment_at(i);
        let proc = PolylineContactProcessor::new(self, m, i, prediction);
        f(m, &element, &proc)
    }

    #[inline]
    fn aabb_at(&self, i: usize) -> AABB<N> {
        self.bvt
            .leaf(self.edges[i].bvt_leaf)
            .bounding_volume()
            .clone()
    }

    #[inline]
    fn bvh(&self) -> BVHImpl<N, usize, AABB<N>> {
        BVHImpl::BVT(&self.bvt)
    }
}

impl<N: RealField> DeformableShape<N> for Polyline<N> {
    fn deformations_type(&self) -> DeformationsType {
        DeformationsType::Vectors
    }

    /// Updates all the degrees of freedom of this shape.
    fn set_deformations(&mut self, coords: &[N]) {
        assert!(
            coords.len() >= self.points.len() * DIM,
            "Set deformations error: dimension mismatch."
        );
        let is_first_init = self.init_deformation_infos();
        self.deformations.curr_timestamp += 1;

        // There is a bit of unsafe code in order to perform a memcopy for
        // efficiency reasons when the mapping between degrees of freedom
        // is trivial.
        unsafe {
            let len = self.points.len();
            let coords_ptr = coords.as_ptr() as *const Point<N>;
            let coords_pt: &[Point<N>] = slice::from_raw_parts(coords_ptr, len);
            self.points.copy_from_slice(coords_pt);
        }

        for (target, pt) in self.points.iter_mut().enumerate() {
            let ref_pt = &mut self.deformations.ref_vertices[target];
            let sq_dist_to_ref = na::distance_squared(pt, ref_pt);

            if is_first_init || sq_dist_to_ref > self.deformations.margin * self.deformations.margin
            {
                // We have to update the adjacent bounding volumes.
                // Note that they can be duplicates on `seg_to_update`.
                // Those duplicates will be filtered using timestamps in the next for loop.
                let ids = self.vertices[target].adj_edges.clone();
                self.deformations
                    .seg_to_update
                    .extend_from_slice(&self.adj_edge_list[ids]);
                *ref_pt = *pt;
            }
        }

        // Update normals.
        for e in &mut self.edges {
            let seg = Segment::new(self.points[e.indices.x], self.points[e.indices.y]);
            e.normal = seg.normal();
        }

        // Apply the bounding volumes changes.
        for seg_id in self.deformations.seg_to_update.drain(..) {
            if self.deformations.timestamps[seg_id] != self.deformations.curr_timestamp {
                // Update the BV.
                let idx = &self.edges[seg_id].indices;
                let mut new_bv = bounding_volume::local_point_cloud_aabb(&[
                    self.points[idx.x],
                    self.points[idx.y],
                ]);
                new_bv.loosen(self.deformations.margin);
                self.bvt
                    .set_leaf_bounding_volume(self.edges[seg_id].bvt_leaf, new_bv, false);
                self.deformations.timestamps[seg_id] = self.deformations.curr_timestamp;
            }
        }

        // FIXME: measure efficiency with a non-zero margin.
        self.bvt.refit(N::zero())
    }

    fn update_local_approximation(&self, coords: &[N], approx: &mut LocalShapeApproximation<N>) {
        match approx.feature {
            FeatureId::Vertex(i) => {
                approx.point = Point::from_slice(&coords[i * DIM..(i + 1) * DIM]);
                approx.geometry = NeighborhoodGeometry::Point;
            }
            #[cfg(feature = "dim3")]
            FeatureId::Edge(i) => {
                let edge = &self.edges[i];
                let pid1 = edge.indices.x * DIM;
                let pid2 = edge.indices.y * DIM;
                let seg = Segment::new(
                    Point::from_slice(&coords[pid1..pid1 + DIM]),
                    Point::from_slice(&coords[pid2..pid2 + DIM]),
                );
                approx.point = seg.a;

                if let Some(dir) = seg.direction() {
                    approx.geometry = NeighborhoodGeometry::Line(dir);
                } else {
                    approx.geometry = NeighborhoodGeometry::Point;
                }
            }
            #[cfg(feature = "dim3")]
            FeatureId::Face(_) => unreachable!(),
            #[cfg(feature = "dim2")]
            FeatureId::Face(mut i) => {
                let is_backface = i >= self.edges.len();
                if is_backface {
                    i -= self.edges.len();
                }

                let edge = &self.edges[i];
                let pid1 = edge.indices.x * DIM;
                let pid2 = edge.indices.y * DIM;
                let seg = Segment::new(
                    Point::from_slice(&coords[pid1..pid1 + DIM]),
                    Point::from_slice(&coords[pid2..pid2 + DIM]),
                );

                approx.point = seg.a;

                if let Some(n) = seg.normal() {
                    if !is_backface {
                        approx.geometry = NeighborhoodGeometry::Plane(n);
                    } else {
                        approx.geometry = NeighborhoodGeometry::Plane(-n);
                    }
                } else {
                    approx.geometry = NeighborhoodGeometry::Point;
                }
            }
            _ => panic!(
                "Encountered invalid triangle feature: {:?}.",
                approx.feature
            ),
        }
    }
}

#[allow(dead_code)]
struct PolylineContactProcessor<'a, N: RealField> {
    polyline: &'a Polyline<N>,
    pos: &'a Isometry<N>,
    edge_id: usize,
    prediction: &'a ContactPrediction<N>,
}

impl<'a, N: RealField> PolylineContactProcessor<'a, N> {
    pub fn new(
        polyline: &'a Polyline<N>,
        pos: &'a Isometry<N>,
        edge_id: usize,
        prediction: &'a ContactPrediction<N>,
    ) -> Self {
        PolylineContactProcessor {
            polyline,
            pos,
            edge_id,
            prediction,
        }
    }
}

impl<'a, N: RealField> ContactPreprocessor<N> for PolylineContactProcessor<'a, N> {
    fn process_contact(
        &self,
        _c: &mut Contact<N>,
        kinematic: &mut ContactKinematic<N>,
        is_first: bool,
    ) -> bool {
        // Fix the feature ID.
        let feature = if is_first {
            kinematic.feature1()
        } else {
            kinematic.feature2()
        };

        let edge = &self.polyline.edges()[self.edge_id];
        let actual_feature = match feature {
            FeatureId::Vertex(i) => FeatureId::Vertex(edge.indices[i]),
            #[cfg(feature = "dim3")]
            FeatureId::Edge(_) => FeatureId::Edge(self.edge_id),
            FeatureId::Face(i) => {
                if i == 0 {
                    FeatureId::Face(self.edge_id)
                } else {
                    FeatureId::Face(self.edge_id + self.polyline.edges().len())
                }
            }
            FeatureId::Unknown => FeatureId::Unknown,
        };

        if is_first {
            kinematic.set_feature1(actual_feature);
        } else {
            kinematic.set_feature2(actual_feature);
        }

        /*
        // TODO: Test the validity of the LMD.
        if c.depth > N::zero() {
            true
        } else {
            let local_dir = self.pos.inverse_transform_unit_vector(&c.normal);

            if is_first {
                self.polyline.tangent_cone_polar_contains_dir(actual_feature, &local_dir, self.prediction.sin_angular1(), self.prediction.cos_angular1())
            } else {
                self.polyline.tangent_cone_polar_contains_dir(actual_feature, &-local_dir, self.prediction.sin_angular2(), self.prediction.cos_angular2())
            }
        }*/
        true
    }
}

#[cfg(feature = "dim2")]
fn xy_point<N: RealField>(x: N, y: N) -> Point<N> {
    Point::new(x, y)
}

#[cfg(feature = "dim3")]
fn xy_point<N: RealField>(x: N, y: N) -> Point<N> {
    Point::new(x, y, N::zero())
}