Struct typenum::int::NInt [−][src]
Type-level signed integers with negative sign.
Implementations
impl<U: Unsigned + NonZero> NInt<U>
[src]
impl<U: Unsigned + NonZero> NInt<U>
[src]Trait Implementations
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Add<NInt<Ur>> for NInt<Ul> where
Ul: Add<Ur>,
<Ul as Add<Ur>>::Output: Unsigned + NonZero,
[src]
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Add<NInt<Ur>> for NInt<Ul> where
Ul: Add<Ur>,
<Ul as Add<Ur>>::Output: Unsigned + NonZero,
[src]N(Ul) + N(Ur) = N(Ul + Ur)
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Add<NInt<Ur>> for PInt<Ul> where
Ul: Cmp<Ur> + PrivateIntegerAdd<<Ul as Cmp<Ur>>::Output, Ur>,
[src]
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Add<NInt<Ur>> for PInt<Ul> where
Ul: Cmp<Ur> + PrivateIntegerAdd<<Ul as Cmp<Ur>>::Output, Ur>,
[src]P(Ul) + N(Ur)
: We resolve this with our PrivateAdd
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Add<PInt<Ur>> for NInt<Ul> where
Ur: Cmp<Ul> + PrivateIntegerAdd<<Ur as Cmp<Ul>>::Output, Ul>,
[src]
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Add<PInt<Ur>> for NInt<Ul> where
Ur: Cmp<Ul> + PrivateIntegerAdd<<Ur as Cmp<Ul>>::Output, Ul>,
[src]N(Ul) + P(Ur)
: We resolve this with our PrivateAdd
impl<U: Clone + Unsigned + NonZero> Clone for NInt<U>
[src]
impl<U: Clone + Unsigned + NonZero> Clone for NInt<U>
[src]fn clone(&self) -> NInt<U>
[src]
pub fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl<Nl: Unsigned + NonZero, Nr: Cmp<Nl> + Unsigned + NonZero> Cmp<NInt<Nr>> for NInt<Nl>
[src]
impl<Nl: Unsigned + NonZero, Nr: Cmp<Nl> + Unsigned + NonZero> Cmp<NInt<Nr>> for NInt<Nl>
[src]-X <==> -Y
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Div<NInt<Ur>> for PInt<Ul> where
Ul: Cmp<Ur>,
PInt<Ul>: PrivateDivInt<<Ul as Cmp<Ur>>::Output, NInt<Ur>>,
[src]
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Div<NInt<Ur>> for PInt<Ul> where
Ul: Cmp<Ur>,
PInt<Ul>: PrivateDivInt<<Ul as Cmp<Ur>>::Output, NInt<Ur>>,
[src]$A<Ul> / $B<Ur> = $R<Ul / Ur>
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Div<NInt<Ur>> for NInt<Ul> where
Ul: Cmp<Ur>,
NInt<Ul>: PrivateDivInt<<Ul as Cmp<Ur>>::Output, NInt<Ur>>,
[src]
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Div<NInt<Ur>> for NInt<Ul> where
Ul: Cmp<Ur>,
NInt<Ul>: PrivateDivInt<<Ul as Cmp<Ur>>::Output, NInt<Ur>>,
[src]$A<Ul> / $B<Ur> = $R<Ul / Ur>
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Div<PInt<Ur>> for NInt<Ul> where
Ul: Cmp<Ur>,
NInt<Ul>: PrivateDivInt<<Ul as Cmp<Ur>>::Output, PInt<Ur>>,
[src]
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Div<PInt<Ur>> for NInt<Ul> where
Ul: Cmp<Ur>,
NInt<Ul>: PrivateDivInt<<Ul as Cmp<Ur>>::Output, PInt<Ur>>,
[src]$A<Ul> / $B<Ur> = $R<Ul / Ur>
impl<U1, U2> Gcd<NInt<U2>> for PInt<U1> where
U1: Unsigned + NonZero + Gcd<U2>,
U2: Unsigned + NonZero,
Gcf<U1, U2>: Unsigned + NonZero,
[src]
impl<U1, U2> Gcd<NInt<U2>> for PInt<U1> where
U1: Unsigned + NonZero + Gcd<U2>,
U2: Unsigned + NonZero,
Gcf<U1, U2>: Unsigned + NonZero,
[src]impl<U1, U2> Gcd<NInt<U2>> for NInt<U1> where
U1: Unsigned + NonZero + Gcd<U2>,
U2: Unsigned + NonZero,
Gcf<U1, U2>: Unsigned + NonZero,
[src]
impl<U1, U2> Gcd<NInt<U2>> for NInt<U1> where
U1: Unsigned + NonZero + Gcd<U2>,
U2: Unsigned + NonZero,
Gcf<U1, U2>: Unsigned + NonZero,
[src]impl<U1, U2> Gcd<PInt<U2>> for NInt<U1> where
U1: Unsigned + NonZero + Gcd<U2>,
U2: Unsigned + NonZero,
Gcf<U1, U2>: Unsigned + NonZero,
[src]
impl<U1, U2> Gcd<PInt<U2>> for NInt<U1> where
U1: Unsigned + NonZero + Gcd<U2>,
U2: Unsigned + NonZero,
Gcf<U1, U2>: Unsigned + NonZero,
[src]impl<Ul, Ur> Max<NInt<Ur>> for NInt<Ul> where
Ul: Unsigned + NonZero + Min<Ur>,
Ur: Unsigned + NonZero,
Minimum<Ul, Ur>: Unsigned + NonZero,
[src]
impl<Ul, Ur> Max<NInt<Ur>> for NInt<Ul> where
Ul: Unsigned + NonZero + Min<Ur>,
Ur: Unsigned + NonZero,
Minimum<Ul, Ur>: Unsigned + NonZero,
[src]impl<Ul, Ur> Min<NInt<Ur>> for NInt<Ul> where
Ul: Unsigned + NonZero + Max<Ur>,
Ur: Unsigned + NonZero,
Maximum<Ul, Ur>: Unsigned + NonZero,
[src]
impl<Ul, Ur> Min<NInt<Ur>> for NInt<Ul> where
Ul: Unsigned + NonZero + Max<Ur>,
Ur: Unsigned + NonZero,
Maximum<Ul, Ur>: Unsigned + NonZero,
[src]impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Mul<NInt<Ur>> for NInt<Ul> where
Ul: Mul<Ur>,
<Ul as Mul<Ur>>::Output: Unsigned + NonZero,
[src]
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Mul<NInt<Ur>> for NInt<Ul> where
Ul: Mul<Ur>,
<Ul as Mul<Ur>>::Output: Unsigned + NonZero,
[src]N(Ul) * N(Ur) = P(Ul * Ur)
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Mul<NInt<Ur>> for PInt<Ul> where
Ul: Mul<Ur>,
<Ul as Mul<Ur>>::Output: Unsigned + NonZero,
[src]
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Mul<NInt<Ur>> for PInt<Ul> where
Ul: Mul<Ur>,
<Ul as Mul<Ur>>::Output: Unsigned + NonZero,
[src]P(Ul) * N(Ur) = N(Ul * Ur)
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Mul<PInt<Ur>> for NInt<Ul> where
Ul: Mul<Ur>,
<Ul as Mul<Ur>>::Output: Unsigned + NonZero,
[src]
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Mul<PInt<Ur>> for NInt<Ul> where
Ul: Mul<Ur>,
<Ul as Mul<Ur>>::Output: Unsigned + NonZero,
[src]N(Ul) * P(Ur) = N(Ul * Ur)
impl<V, A, U> Mul<TArr<V, A>> for NInt<U> where
U: Unsigned + NonZero,
NInt<U>: Mul<A> + Mul<V>,
[src]
impl<V, A, U> Mul<TArr<V, A>> for NInt<U> where
U: Unsigned + NonZero,
NInt<U>: Mul<A> + Mul<V>,
[src]impl<U: PartialOrd + Unsigned + NonZero> PartialOrd<NInt<U>> for NInt<U>
[src]
impl<U: PartialOrd + Unsigned + NonZero> PartialOrd<NInt<U>> for NInt<U>
[src]impl<Ul: Unsigned + NonZero, Ur: Unsigned> Pow<PInt<UInt<Ur, B0>>> for NInt<Ul> where
Ul: Pow<UInt<Ur, B0>>,
<Ul as Pow<UInt<Ur, B0>>>::Output: Unsigned + NonZero,
[src]
impl<Ul: Unsigned + NonZero, Ur: Unsigned> Pow<PInt<UInt<Ur, B0>>> for NInt<Ul> where
Ul: Pow<UInt<Ur, B0>>,
<Ul as Pow<UInt<Ur, B0>>>::Output: Unsigned + NonZero,
[src]N(Ul)^P(Ur) = P(Ul^Ur) if Ur is even
impl<Ul: Unsigned + NonZero, Ur: Unsigned> Pow<PInt<UInt<Ur, B1>>> for NInt<Ul> where
Ul: Pow<UInt<Ur, B1>>,
<Ul as Pow<UInt<Ur, B1>>>::Output: Unsigned + NonZero,
[src]
impl<Ul: Unsigned + NonZero, Ur: Unsigned> Pow<PInt<UInt<Ur, B1>>> for NInt<Ul> where
Ul: Pow<UInt<Ur, B1>>,
<Ul as Pow<UInt<Ur, B1>>>::Output: Unsigned + NonZero,
[src]N(Ul)^P(Ur) = N(Ul^Ur) if Ur is odd
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Rem<NInt<Ur>> for PInt<Ul> where
Ul: Rem<Ur>,
PInt<Ul>: PrivateRem<<Ul as Rem<Ur>>::Output, NInt<Ur>>,
[src]
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Rem<NInt<Ur>> for PInt<Ul> where
Ul: Rem<Ur>,
PInt<Ul>: PrivateRem<<Ul as Rem<Ur>>::Output, NInt<Ur>>,
[src]$A<Ul> % $B<Ur> = $R<Ul % Ur>
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Rem<NInt<Ur>> for NInt<Ul> where
Ul: Rem<Ur>,
NInt<Ul>: PrivateRem<<Ul as Rem<Ur>>::Output, NInt<Ur>>,
[src]
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Rem<NInt<Ur>> for NInt<Ul> where
Ul: Rem<Ur>,
NInt<Ul>: PrivateRem<<Ul as Rem<Ur>>::Output, NInt<Ur>>,
[src]$A<Ul> % $B<Ur> = $R<Ul % Ur>
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Rem<PInt<Ur>> for NInt<Ul> where
Ul: Rem<Ur>,
NInt<Ul>: PrivateRem<<Ul as Rem<Ur>>::Output, PInt<Ur>>,
[src]
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Rem<PInt<Ur>> for NInt<Ul> where
Ul: Rem<Ur>,
NInt<Ul>: PrivateRem<<Ul as Rem<Ur>>::Output, PInt<Ur>>,
[src]$A<Ul> % $B<Ur> = $R<Ul % Ur>
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Sub<NInt<Ur>> for PInt<Ul> where
Ul: Add<Ur>,
<Ul as Add<Ur>>::Output: Unsigned + NonZero,
[src]
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Sub<NInt<Ur>> for PInt<Ul> where
Ul: Add<Ur>,
<Ul as Add<Ur>>::Output: Unsigned + NonZero,
[src]P(Ul) - N(Ur) = P(Ul + Ur)
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Sub<NInt<Ur>> for NInt<Ul> where
Ur: Cmp<Ul> + PrivateIntegerAdd<<Ur as Cmp<Ul>>::Output, Ul>,
[src]
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Sub<NInt<Ur>> for NInt<Ul> where
Ur: Cmp<Ul> + PrivateIntegerAdd<<Ur as Cmp<Ul>>::Output, Ul>,
[src]N(Ul) - N(Ur)
: We resolve this with our PrivateAdd
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Sub<PInt<Ur>> for NInt<Ul> where
Ul: Add<Ur>,
<Ul as Add<Ur>>::Output: Unsigned + NonZero,
[src]
impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Sub<PInt<Ur>> for NInt<Ul> where
Ul: Add<Ur>,
<Ul as Add<Ur>>::Output: Unsigned + NonZero,
[src]N(Ul) - P(Ur) = N(Ul + Ur)
impl<U: Copy + Unsigned + NonZero> Copy for NInt<U>
[src]
impl<U: Eq + Unsigned + NonZero> Eq for NInt<U>
[src]
impl<U: Unsigned + NonZero> NonZero for NInt<U>
[src]
impl<U: Unsigned + NonZero> StructuralEq for NInt<U>
[src]
impl<U: Unsigned + NonZero> StructuralPartialEq for NInt<U>
[src]
Auto Trait Implementations
impl<U> Send for NInt<U> where
U: Send,
U: Send,
impl<U> Sync for NInt<U> where
U: Sync,
U: Sync,
impl<U> Unpin for NInt<U> where
U: Unpin,
U: Unpin,
Blanket Implementations
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<M, N> PartialDiv<N> for M where
M: Integer + Div<N> + Rem<N, Output = Z0>,
[src]
impl<M, N> PartialDiv<N> for M where
M: Integer + Div<N> + Rem<N, Output = Z0>,
[src]type Output = <M as Div<N>>::Output
The type of the result of the division