[−][src]Struct alga::general::Id
The universal identity element wrt. a given operator, usually noted Id with a
context-dependent subscript.
By default, it is the multiplicative identity element. It represents the degenerate set containing only the identity element of any group-like structure. It has no dimension known at compile-time. All its operations are no-ops.
Methods
impl<O: Operator> Id<O>[src]
impl<O: Operator> Id<O>Trait Implementations
impl<O: Operator> AbstractMagma<O> for Id<O>[src]
impl<O: Operator> AbstractMagma<O> for Id<O>fn operate(&self, _: &Self) -> Id<O>[src]
fn operate(&self, _: &Self) -> Id<O>fn op(&self, _: O, lhs: &Self) -> Self[src]
fn op(&self, _: O, lhs: &Self) -> SelfPerforms specific operation.
impl<O: Operator> AbstractQuasigroup<O> for Id<O>[src]
impl<O: Operator> AbstractQuasigroup<O> for Id<O>fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
Self: Eq, [src]
fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
Self: Eq, Returns true if latin squareness holds for the given arguments.
impl<O: Operator> AbstractSemigroup<O> for Id<O>[src]
impl<O: Operator> AbstractSemigroup<O> for Id<O>fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, [src]
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, Returns true if associativity holds for the given arguments.
impl<O: Operator> AbstractLoop<O> for Id<O>[src]
impl<O: Operator> AbstractLoop<O> for Id<O>impl<O: Operator> AbstractMonoid<O> for Id<O>[src]
impl<O: Operator> AbstractMonoid<O> for Id<O>fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, [src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, [src]
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, Checks whether operating with the identity element is a no-op for the given argument. Read more
impl<O: Operator> AbstractGroup<O> for Id<O>[src]
impl<O: Operator> AbstractGroup<O> for Id<O>impl<O: Operator> AbstractGroupAbelian<O> for Id<O>[src]
impl<O: Operator> AbstractGroupAbelian<O> for Id<O>fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, Returns true if the operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_is_commutative(args: (Self, Self)) -> bool where
Self: Eq, [src]
fn prop_is_commutative(args: (Self, Self)) -> bool where
Self: Eq, Returns true if the operator is commutative for the given argument tuple.
impl<O: Operator> Identity<O> for Id<O>[src]
impl<O: Operator> Identity<O> for Id<O>impl<O: Operator> Inverse<O> for Id<O>[src]
impl<O: Operator> Inverse<O> for Id<O>fn inverse(&self) -> Self[src]
fn inverse(&self) -> Selffn inverse_mut(&mut self)[src]
fn inverse_mut(&mut self)impl<O: Operator> MeetSemilattice for Id<O>[src]
impl<O: Operator> MeetSemilattice for Id<O>impl<O: Operator> JoinSemilattice for Id<O>[src]
impl<O: Operator> JoinSemilattice for Id<O>impl<O: Operator> Lattice for Id<O>[src]
impl<O: Operator> Lattice for Id<O>fn meet_join(&self, other: &Self) -> (Self, Self)[src]
fn meet_join(&self, other: &Self) -> (Self, Self)Returns the infimum and the supremum simultaneously.
fn partial_min<'a>(&'a self, other: &'a Self) -> Option<&'a Self>[src]
fn partial_min<'a>(&'a self, other: &'a Self) -> Option<&'a Self>Return the minimum of self and other if they are comparable.
fn partial_max<'a>(&'a self, other: &'a Self) -> Option<&'a Self>[src]
fn partial_max<'a>(&'a self, other: &'a Self) -> Option<&'a Self>Return the maximum of self and other if they are comparable.
fn partial_sort2<'a>(&'a self, other: &'a Self) -> Option<(&'a Self, &'a Self)>[src]
fn partial_sort2<'a>(&'a self, other: &'a Self) -> Option<(&'a Self, &'a Self)>Sorts two values in increasing order using a partial ordering.
fn partial_clamp<'a>(&'a self, min: &'a Self, max: &'a Self) -> Option<&'a Self>[src]
fn partial_clamp<'a>(&'a self, min: &'a Self, max: &'a Self) -> Option<&'a Self>Clamp value between min and max. Returns None if value is not comparable to min or max. Read more
impl<O: Operator, T: PartialEq + Identity<O>> SubsetOf<T> for Id<O>[src]
impl<O: Operator, T: PartialEq + Identity<O>> SubsetOf<T> for Id<O>fn to_superset(&self) -> T[src]
fn to_superset(&self) -> Tfn is_in_subset(t: &T) -> bool[src]
fn is_in_subset(t: &T) -> boolunsafe fn from_superset_unchecked(_: &T) -> Self[src]
unsafe fn from_superset_unchecked(_: &T) -> Selffn from_superset(element: &T) -> Option<Self>[src]
fn from_superset(element: &T) -> Option<Self>The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
impl<E: EuclideanSpace> Transformation<E> for Id[src]
impl<E: EuclideanSpace> Transformation<E> for Idfn transform_point(&self, pt: &E) -> E[src]
fn transform_point(&self, pt: &E) -> Efn transform_vector(&self, v: &E::Coordinates) -> E::Coordinates[src]
fn transform_vector(&self, v: &E::Coordinates) -> E::Coordinatesimpl<E: EuclideanSpace> ProjectiveTransformation<E> for Id[src]
impl<E: EuclideanSpace> ProjectiveTransformation<E> for Idfn inverse_transform_point(&self, pt: &E) -> E[src]
fn inverse_transform_point(&self, pt: &E) -> Efn inverse_transform_vector(&self, v: &E::Coordinates) -> E::Coordinates[src]
fn inverse_transform_vector(&self, v: &E::Coordinates) -> E::Coordinatesimpl<E: EuclideanSpace> AffineTransformation<E> for Id[src]
impl<E: EuclideanSpace> AffineTransformation<E> for Idtype Rotation = Id
Type of the first rotation to be applied.
type NonUniformScaling = Id
Type of the non-uniform scaling to be applied.
type Translation = Id
The type of the pure translation part of this affine transformation.
fn decompose(&self) -> (Id, Id, Id, Id)[src]
fn decompose(&self) -> (Id, Id, Id, Id)fn append_translation(&self, _: &Self::Translation) -> Self[src]
fn append_translation(&self, _: &Self::Translation) -> Selffn prepend_translation(&self, _: &Self::Translation) -> Self[src]
fn prepend_translation(&self, _: &Self::Translation) -> Selffn append_rotation(&self, _: &Self::Rotation) -> Self[src]
fn append_rotation(&self, _: &Self::Rotation) -> Selffn prepend_rotation(&self, _: &Self::Rotation) -> Self[src]
fn prepend_rotation(&self, _: &Self::Rotation) -> Selffn append_scaling(&self, _: &Self::NonUniformScaling) -> Self[src]
fn append_scaling(&self, _: &Self::NonUniformScaling) -> Selffn prepend_scaling(&self, _: &Self::NonUniformScaling) -> Self[src]
fn prepend_scaling(&self, _: &Self::NonUniformScaling) -> Selffn append_rotation_wrt_point(&self, r: &Self::Rotation, p: &E) -> Option<Self>[src]
fn append_rotation_wrt_point(&self, r: &Self::Rotation, p: &E) -> Option<Self>Appends to this similarity a rotation centered at the point p, i.e., this point is left invariant. Read more
impl<E: EuclideanSpace> Similarity<E> for Id[src]
impl<E: EuclideanSpace> Similarity<E> for Idtype Scaling = Id
The type of the pure (uniform) scaling part of this similarity transformation.
fn translation(&self) -> Self::Translation[src]
fn translation(&self) -> Self::Translationfn rotation(&self) -> Self::Rotation[src]
fn rotation(&self) -> Self::Rotationfn scaling(&self) -> Self::Scaling[src]
fn scaling(&self) -> Self::Scalingfn translate_point(&self, pt: &E) -> E[src]
fn translate_point(&self, pt: &E) -> EApplies this transformation's pure translational part to a point.
fn rotate_point(&self, pt: &E) -> E[src]
fn rotate_point(&self, pt: &E) -> EApplies this transformation's pure rotational part to a point.
fn scale_point(&self, pt: &E) -> E[src]
fn scale_point(&self, pt: &E) -> EApplies this transformation's pure scaling part to a point.
fn rotate_vector(&self, pt: &E::Coordinates) -> E::Coordinates[src]
fn rotate_vector(&self, pt: &E::Coordinates) -> E::CoordinatesApplies this transformation's pure rotational part to a vector.
fn scale_vector(&self, pt: &E::Coordinates) -> E::Coordinates[src]
fn scale_vector(&self, pt: &E::Coordinates) -> E::CoordinatesApplies this transformation's pure scaling part to a vector.
fn inverse_translate_point(&self, pt: &E) -> E[src]
fn inverse_translate_point(&self, pt: &E) -> EApplies this transformation inverse's pure translational part to a point.
fn inverse_rotate_point(&self, pt: &E) -> E[src]
fn inverse_rotate_point(&self, pt: &E) -> EApplies this transformation inverse's pure rotational part to a point.
fn inverse_scale_point(&self, pt: &E) -> E[src]
fn inverse_scale_point(&self, pt: &E) -> EApplies this transformation inverse's pure scaling part to a point.
fn inverse_rotate_vector(&self, pt: &E::Coordinates) -> E::Coordinates[src]
fn inverse_rotate_vector(&self, pt: &E::Coordinates) -> E::CoordinatesApplies this transformation inverse's pure rotational part to a vector.
fn inverse_scale_vector(&self, pt: &E::Coordinates) -> E::Coordinates[src]
fn inverse_scale_vector(&self, pt: &E::Coordinates) -> E::CoordinatesApplies this transformation inverse's pure scaling part to a vector.
impl<E: EuclideanSpace> Isometry<E> for Id[src]
impl<E: EuclideanSpace> Isometry<E> for Idimpl<E: EuclideanSpace> DirectIsometry<E> for Id[src]
impl<E: EuclideanSpace> DirectIsometry<E> for Idimpl<E: EuclideanSpace> OrthogonalTransformation<E> for Id[src]
impl<E: EuclideanSpace> OrthogonalTransformation<E> for Idimpl<E: EuclideanSpace> Scaling<E> for Id[src]
impl<E: EuclideanSpace> Scaling<E> for Idfn to_real(&self) -> E::Real[src]
fn to_real(&self) -> E::RealConverts this scaling factor to a real. Same as self.to_superset().
fn from_real(r: E::Real) -> Option<Self>[src]
fn from_real(r: E::Real) -> Option<Self>Attempts to convert a real to an element of this scaling subgroup. Same as Self::from_superset(). Returns None if no such scaling is possible for this subgroup. Read more
fn powf(&self, n: E::Real) -> Option<Self>[src]
fn powf(&self, n: E::Real) -> Option<Self>Raises the scaling to a power. The result must be equivalent to self.to_superset().powf(n). Returns None if the result is not representable by Self. Read more
fn scale_between(a: &E::Coordinates, b: &E::Coordinates) -> Option<Self>[src]
fn scale_between(a: &E::Coordinates, b: &E::Coordinates) -> Option<Self>The scaling required to make a have the same norm as b, i.e., |b| = |a| * norm_ratio(a, b). Read more
impl<E: EuclideanSpace> Translation<E> for Id[src]
impl<E: EuclideanSpace> Translation<E> for Idfn to_vector(&self) -> E::Coordinates[src]
fn to_vector(&self) -> E::Coordinatesfn from_vector(v: E::Coordinates) -> Option<Self>[src]
fn from_vector(v: E::Coordinates) -> Option<Self>fn powf(&self, n: E::Real) -> Option<Self>[src]
fn powf(&self, n: E::Real) -> Option<Self>Raises the translation to a power. The result must be equivalent to self.to_superset() * n. Returns None if the result is not representable by Self. Read more
fn translation_between(a: &E, b: &E) -> Option<Self>[src]
fn translation_between(a: &E, b: &E) -> Option<Self>The translation needed to make a coincide with b, i.e., b = a * translation_to(a, b).
impl<E: EuclideanSpace> Rotation<E> for Id[src]
impl<E: EuclideanSpace> Rotation<E> for Idfn powf(&self, _: E::Real) -> Option<Self>[src]
fn powf(&self, _: E::Real) -> Option<Self>fn rotation_between(a: &E::Coordinates, b: &E::Coordinates) -> Option<Self>[src]
fn rotation_between(a: &E::Coordinates, b: &E::Coordinates) -> Option<Self>fn scaled_rotation_between(
a: &E::Coordinates,
b: &E::Coordinates,
_: E::Real
) -> Option<Self>[src]
fn scaled_rotation_between(
a: &E::Coordinates,
b: &E::Coordinates,
_: E::Real
) -> Option<Self>impl<O: Operator> PartialOrd<Id<O>> for Id<O>[src]
impl<O: Operator> PartialOrd<Id<O>> for Id<O>fn partial_cmp(&self, _: &Id<O>) -> Option<Ordering>[src]
fn partial_cmp(&self, _: &Id<O>) -> Option<Ordering>#[must_use]
fn lt(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
#[must_use]
fn le(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
#[must_use]
fn gt(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
#[must_use]
fn ge(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl<O: Operator> PartialEq<Id<O>> for Id<O>[src]
impl<O: Operator> PartialEq<Id<O>> for Id<O>fn eq(&self, _: &Id<O>) -> bool[src]
fn eq(&self, _: &Id<O>) -> bool#[must_use]
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl<O: Operator> Clone for Id<O>[src]
impl<O: Operator> Clone for Id<O>fn clone(&self) -> Id<O>[src]
fn clone(&self) -> Id<O>fn clone_from(&mut self, source: &Self)1.0.0[src]
fn clone_from(&mut self, source: &Self)Performs copy-assignment from source. Read more
impl<O: Operator> Copy for Id<O>[src]
impl<O: Operator> Copy for Id<O>impl<O: Operator> Eq for Id<O>[src]
impl<O: Operator> Eq for Id<O>impl<O: Operator> Display for Id<O>[src]
impl<O: Operator> Display for Id<O>impl<O: Debug + Operator> Debug for Id<O>[src]
impl<O: Debug + Operator> Debug for Id<O>impl Add<Id<Additive>> for Id<Additive>[src]
impl Add<Id<Additive>> for Id<Additive>type Output = Id<Additive>
The resulting type after applying the + operator.
fn add(self, _: Id<Additive>) -> Id<Additive>[src]
fn add(self, _: Id<Additive>) -> Id<Additive>impl Mul<Id<Multiplicative>> for Id[src]
impl Mul<Id<Multiplicative>> for Idimpl Div<Id<Multiplicative>> for Id[src]
impl Div<Id<Multiplicative>> for Idimpl AddAssign<Id<Additive>> for Id<Additive>[src]
impl AddAssign<Id<Additive>> for Id<Additive>fn add_assign(&mut self, _: Id<Additive>)[src]
fn add_assign(&mut self, _: Id<Additive>)impl MulAssign<Id<Multiplicative>> for Id[src]
impl MulAssign<Id<Multiplicative>> for Idfn mul_assign(&mut self, _: Id)[src]
fn mul_assign(&mut self, _: Id)impl DivAssign<Id<Multiplicative>> for Id[src]
impl DivAssign<Id<Multiplicative>> for Idfn div_assign(&mut self, _: Id)[src]
fn div_assign(&mut self, _: Id)impl<O: Operator> AbsDiffEq for Id<O>[src]
impl<O: Operator> AbsDiffEq for Id<O>type Epsilon = Id<O>
Used for specifying relative comparisons.
fn default_epsilon() -> Self::Epsilon[src]
fn default_epsilon() -> Self::Epsilonfn abs_diff_eq(&self, _: &Self, _: Self::Epsilon) -> bool[src]
fn abs_diff_eq(&self, _: &Self, _: Self::Epsilon) -> boolfn abs_diff_ne(&self, other: &Self, epsilon: Self::Epsilon) -> bool[src]
fn abs_diff_ne(&self, other: &Self, epsilon: Self::Epsilon) -> boolThe inverse of ApproxEq::abs_diff_eq.
impl<O: Operator> RelativeEq for Id<O>[src]
impl<O: Operator> RelativeEq for Id<O>fn default_max_relative() -> Self::Epsilon[src]
fn default_max_relative() -> Self::Epsilonfn relative_eq(&self, _: &Self, _: Self::Epsilon, _: Self::Epsilon) -> bool[src]
fn relative_eq(&self, _: &Self, _: Self::Epsilon, _: Self::Epsilon) -> boolfn relative_ne(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool[src]
fn relative_ne(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> boolThe inverse of ApproxEq::relative_eq.
impl<O: Operator> UlpsEq for Id<O>[src]
impl<O: Operator> UlpsEq for Id<O>fn default_max_ulps() -> u32[src]
fn default_max_ulps() -> u32fn ulps_eq(&self, _: &Self, _: Self::Epsilon, _: u32) -> bool[src]
fn ulps_eq(&self, _: &Self, _: Self::Epsilon, _: u32) -> boolfn ulps_ne(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool[src]
fn ulps_ne(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> boolThe inverse of ApproxEq::ulps_eq.
impl Zero for Id<Additive>[src]
impl Zero for Id<Additive>impl One for Id[src]
impl One for IdAuto Trait Implementations
Blanket Implementations
impl<T, U> Into for T where
U: From<T>, [src]
impl<T, U> Into for T where
U: From<T>, impl<T> ToString for T where
T: Display + ?Sized, [src]
impl<T> ToString for T where
T: Display + ?Sized, impl<T> ToOwned for T where
T: Clone, [src]
impl<T> ToOwned for T where
T: Clone, impl<T> From for T[src]
impl<T> From for Timpl<T, U> TryFrom for T where
T: From<U>, [src]
impl<T, U> TryFrom for T where
T: From<U>, type Error = !
try_from)The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>impl<T> Borrow for T where
T: ?Sized, [src]
impl<T> Borrow for T where
T: ?Sized, impl<T> Any for T where
T: 'static + ?Sized, [src]
impl<T> Any for T where
T: 'static + ?Sized, fn get_type_id(&self) -> TypeId[src]
fn get_type_id(&self) -> TypeIdimpl<T, U> TryInto for T where
U: TryFrom<T>, [src]
impl<T, U> TryInto for T where
U: TryFrom<T>, type Error = <U as TryFrom<T>>::Error
try_from)The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>[src]
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>impl<T> BorrowMut for T where
T: ?Sized, [src]
impl<T> BorrowMut for T where
T: ?Sized, fn borrow_mut(&mut self) -> &mut T[src]
fn borrow_mut(&mut self) -> &mut T