[−][src]Struct alga::general::Multiplicative
The multiplication operator, commonly symbolized by ×.
Trait Implementations
impl AbstractMagma<Multiplicative> for u8[src]
impl AbstractMagma<Multiplicative> for u8fn operate(&self, lhs: &Self) -> Self[src]
fn operate(&self, lhs: &Self) -> Selffn op(&self, _: O, lhs: &Self) -> Self[src]
fn op(&self, _: O, lhs: &Self) -> SelfPerforms specific operation.
impl AbstractMagma<Multiplicative> for u16[src]
impl AbstractMagma<Multiplicative> for u16fn operate(&self, lhs: &Self) -> Self[src]
fn operate(&self, lhs: &Self) -> Selffn op(&self, _: O, lhs: &Self) -> Self[src]
fn op(&self, _: O, lhs: &Self) -> SelfPerforms specific operation.
impl AbstractMagma<Multiplicative> for u32[src]
impl AbstractMagma<Multiplicative> for u32fn operate(&self, lhs: &Self) -> Self[src]
fn operate(&self, lhs: &Self) -> Selffn op(&self, _: O, lhs: &Self) -> Self[src]
fn op(&self, _: O, lhs: &Self) -> SelfPerforms specific operation.
impl AbstractMagma<Multiplicative> for u64[src]
impl AbstractMagma<Multiplicative> for u64fn operate(&self, lhs: &Self) -> Self[src]
fn operate(&self, lhs: &Self) -> Selffn op(&self, _: O, lhs: &Self) -> Self[src]
fn op(&self, _: O, lhs: &Self) -> SelfPerforms specific operation.
impl AbstractMagma<Multiplicative> for usize[src]
impl AbstractMagma<Multiplicative> for usizefn operate(&self, lhs: &Self) -> Self[src]
fn operate(&self, lhs: &Self) -> Selffn op(&self, _: O, lhs: &Self) -> Self[src]
fn op(&self, _: O, lhs: &Self) -> SelfPerforms specific operation.
impl AbstractMagma<Multiplicative> for i8[src]
impl AbstractMagma<Multiplicative> for i8fn operate(&self, lhs: &Self) -> Self[src]
fn operate(&self, lhs: &Self) -> Selffn op(&self, _: O, lhs: &Self) -> Self[src]
fn op(&self, _: O, lhs: &Self) -> SelfPerforms specific operation.
impl AbstractMagma<Multiplicative> for i16[src]
impl AbstractMagma<Multiplicative> for i16fn operate(&self, lhs: &Self) -> Self[src]
fn operate(&self, lhs: &Self) -> Selffn op(&self, _: O, lhs: &Self) -> Self[src]
fn op(&self, _: O, lhs: &Self) -> SelfPerforms specific operation.
impl AbstractMagma<Multiplicative> for i32[src]
impl AbstractMagma<Multiplicative> for i32fn operate(&self, lhs: &Self) -> Self[src]
fn operate(&self, lhs: &Self) -> Selffn op(&self, _: O, lhs: &Self) -> Self[src]
fn op(&self, _: O, lhs: &Self) -> SelfPerforms specific operation.
impl AbstractMagma<Multiplicative> for i64[src]
impl AbstractMagma<Multiplicative> for i64fn operate(&self, lhs: &Self) -> Self[src]
fn operate(&self, lhs: &Self) -> Selffn op(&self, _: O, lhs: &Self) -> Self[src]
fn op(&self, _: O, lhs: &Self) -> SelfPerforms specific operation.
impl AbstractMagma<Multiplicative> for isize[src]
impl AbstractMagma<Multiplicative> for isizefn operate(&self, lhs: &Self) -> Self[src]
fn operate(&self, lhs: &Self) -> Selffn op(&self, _: O, lhs: &Self) -> Self[src]
fn op(&self, _: O, lhs: &Self) -> SelfPerforms specific operation.
impl AbstractMagma<Multiplicative> for f32[src]
impl AbstractMagma<Multiplicative> for f32fn operate(&self, lhs: &Self) -> Self[src]
fn operate(&self, lhs: &Self) -> Selffn op(&self, _: O, lhs: &Self) -> Self[src]
fn op(&self, _: O, lhs: &Self) -> SelfPerforms specific operation.
impl AbstractMagma<Multiplicative> for f64[src]
impl AbstractMagma<Multiplicative> for f64fn operate(&self, lhs: &Self) -> Self[src]
fn operate(&self, lhs: &Self) -> Selffn op(&self, _: O, lhs: &Self) -> Self[src]
fn op(&self, _: O, lhs: &Self) -> SelfPerforms specific operation.
impl<N: Num + Clone> AbstractMagma<Multiplicative> for Complex<N>[src]
impl<N: Num + Clone> AbstractMagma<Multiplicative> for Complex<N>fn operate(&self, lhs: &Self) -> Self[src]
fn operate(&self, lhs: &Self) -> Selffn op(&self, _: O, lhs: &Self) -> Self[src]
fn op(&self, _: O, lhs: &Self) -> SelfPerforms specific operation.
impl<N> AbstractQuasigroup<Multiplicative> for Complex<N> where
N: Num + Clone + ClosedNeg, [src]
impl<N> AbstractQuasigroup<Multiplicative> for Complex<N> where
N: Num + Clone + ClosedNeg, fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
Self: Eq, [src]
fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
Self: Eq, Returns true if latin squareness holds for the given arguments.
impl AbstractQuasigroup<Multiplicative> for f32[src]
impl AbstractQuasigroup<Multiplicative> for f32fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
Self: Eq, [src]
fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
Self: Eq, Returns true if latin squareness holds for the given arguments.
impl AbstractQuasigroup<Multiplicative> for f64[src]
impl AbstractQuasigroup<Multiplicative> for f64fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
Self: Eq, [src]
fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
Self: Eq, Returns true if latin squareness holds for the given arguments.
impl AbstractSemigroup<Multiplicative> for u8[src]
impl AbstractSemigroup<Multiplicative> for u8fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, [src]
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, Returns true if associativity holds for the given arguments.
impl AbstractSemigroup<Multiplicative> for u16[src]
impl AbstractSemigroup<Multiplicative> for u16fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, [src]
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, Returns true if associativity holds for the given arguments.
impl AbstractSemigroup<Multiplicative> for u32[src]
impl AbstractSemigroup<Multiplicative> for u32fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, [src]
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, Returns true if associativity holds for the given arguments.
impl AbstractSemigroup<Multiplicative> for u64[src]
impl AbstractSemigroup<Multiplicative> for u64fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, [src]
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, Returns true if associativity holds for the given arguments.
impl AbstractSemigroup<Multiplicative> for usize[src]
impl AbstractSemigroup<Multiplicative> for usizefn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, [src]
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, Returns true if associativity holds for the given arguments.
impl<N> AbstractSemigroup<Multiplicative> for Complex<N> where
N: Num + Clone + ClosedNeg, [src]
impl<N> AbstractSemigroup<Multiplicative> for Complex<N> where
N: Num + Clone + ClosedNeg, fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, [src]
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, Returns true if associativity holds for the given arguments.
impl AbstractSemigroup<Multiplicative> for i8[src]
impl AbstractSemigroup<Multiplicative> for i8fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, [src]
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, Returns true if associativity holds for the given arguments.
impl AbstractSemigroup<Multiplicative> for i16[src]
impl AbstractSemigroup<Multiplicative> for i16fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, [src]
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, Returns true if associativity holds for the given arguments.
impl AbstractSemigroup<Multiplicative> for i32[src]
impl AbstractSemigroup<Multiplicative> for i32fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, [src]
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, Returns true if associativity holds for the given arguments.
impl AbstractSemigroup<Multiplicative> for i64[src]
impl AbstractSemigroup<Multiplicative> for i64fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, [src]
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, Returns true if associativity holds for the given arguments.
impl AbstractSemigroup<Multiplicative> for isize[src]
impl AbstractSemigroup<Multiplicative> for isizefn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, [src]
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, Returns true if associativity holds for the given arguments.
impl AbstractSemigroup<Multiplicative> for f32[src]
impl AbstractSemigroup<Multiplicative> for f32fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, [src]
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, Returns true if associativity holds for the given arguments.
impl AbstractSemigroup<Multiplicative> for f64[src]
impl AbstractSemigroup<Multiplicative> for f64fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, [src]
fn prop_is_associative(args: (Self, Self, Self)) -> bool where
Self: Eq, Returns true if associativity holds for the given arguments.
impl<N> AbstractLoop<Multiplicative> for Complex<N> where
N: Num + Clone + ClosedNeg, [src]
impl<N> AbstractLoop<Multiplicative> for Complex<N> where
N: Num + Clone + ClosedNeg, impl AbstractLoop<Multiplicative> for f32[src]
impl AbstractLoop<Multiplicative> for f32impl AbstractLoop<Multiplicative> for f64[src]
impl AbstractLoop<Multiplicative> for f64impl AbstractMonoid<Multiplicative> for u8[src]
impl AbstractMonoid<Multiplicative> for u8fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, [src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, [src]
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, Checks whether operating with the identity element is a no-op for the given argument. Read more
impl AbstractMonoid<Multiplicative> for u16[src]
impl AbstractMonoid<Multiplicative> for u16fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, [src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, [src]
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, Checks whether operating with the identity element is a no-op for the given argument. Read more
impl AbstractMonoid<Multiplicative> for u32[src]
impl AbstractMonoid<Multiplicative> for u32fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, [src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, [src]
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, Checks whether operating with the identity element is a no-op for the given argument. Read more
impl AbstractMonoid<Multiplicative> for u64[src]
impl AbstractMonoid<Multiplicative> for u64fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, [src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, [src]
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, Checks whether operating with the identity element is a no-op for the given argument. Read more
impl AbstractMonoid<Multiplicative> for usize[src]
impl AbstractMonoid<Multiplicative> for usizefn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, [src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, [src]
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, Checks whether operating with the identity element is a no-op for the given argument. Read more
impl<N> AbstractMonoid<Multiplicative> for Complex<N> where
N: Num + Clone + ClosedNeg, [src]
impl<N> AbstractMonoid<Multiplicative> for Complex<N> where
N: Num + Clone + ClosedNeg, fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, [src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, [src]
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, Checks whether operating with the identity element is a no-op for the given argument. Read more
impl AbstractMonoid<Multiplicative> for i8[src]
impl AbstractMonoid<Multiplicative> for i8fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, [src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, [src]
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, Checks whether operating with the identity element is a no-op for the given argument. Read more
impl AbstractMonoid<Multiplicative> for i16[src]
impl AbstractMonoid<Multiplicative> for i16fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, [src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, [src]
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, Checks whether operating with the identity element is a no-op for the given argument. Read more
impl AbstractMonoid<Multiplicative> for i32[src]
impl AbstractMonoid<Multiplicative> for i32fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, [src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, [src]
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, Checks whether operating with the identity element is a no-op for the given argument. Read more
impl AbstractMonoid<Multiplicative> for i64[src]
impl AbstractMonoid<Multiplicative> for i64fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, [src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, [src]
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, Checks whether operating with the identity element is a no-op for the given argument. Read more
impl AbstractMonoid<Multiplicative> for isize[src]
impl AbstractMonoid<Multiplicative> for isizefn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, [src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, [src]
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, Checks whether operating with the identity element is a no-op for the given argument. Read more
impl AbstractMonoid<Multiplicative> for f32[src]
impl AbstractMonoid<Multiplicative> for f32fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, [src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, [src]
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, Checks whether operating with the identity element is a no-op for the given argument. Read more
impl AbstractMonoid<Multiplicative> for f64[src]
impl AbstractMonoid<Multiplicative> for f64fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, [src]
fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
Self: RelativeEq, Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, [src]
fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
Self: Eq, Checks whether operating with the identity element is a no-op for the given argument. Read more
impl<N> AbstractGroup<Multiplicative> for Complex<N> where
N: Num + Clone + ClosedNeg, [src]
impl<N> AbstractGroup<Multiplicative> for Complex<N> where
N: Num + Clone + ClosedNeg, impl AbstractGroup<Multiplicative> for f32[src]
impl AbstractGroup<Multiplicative> for f32impl AbstractGroup<Multiplicative> for f64[src]
impl AbstractGroup<Multiplicative> for f64impl<N> AbstractGroupAbelian<Multiplicative> for Complex<N> where
N: Num + Clone + ClosedNeg, [src]
impl<N> AbstractGroupAbelian<Multiplicative> for Complex<N> where
N: Num + Clone + ClosedNeg, fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, Returns true if the operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_is_commutative(args: (Self, Self)) -> bool where
Self: Eq, [src]
fn prop_is_commutative(args: (Self, Self)) -> bool where
Self: Eq, Returns true if the operator is commutative for the given argument tuple.
impl AbstractGroupAbelian<Multiplicative> for f32[src]
impl AbstractGroupAbelian<Multiplicative> for f32fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, Returns true if the operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_is_commutative(args: (Self, Self)) -> bool where
Self: Eq, [src]
fn prop_is_commutative(args: (Self, Self)) -> bool where
Self: Eq, Returns true if the operator is commutative for the given argument tuple.
impl AbstractGroupAbelian<Multiplicative> for f64[src]
impl AbstractGroupAbelian<Multiplicative> for f64fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, Returns true if the operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_is_commutative(args: (Self, Self)) -> bool where
Self: Eq, [src]
fn prop_is_commutative(args: (Self, Self)) -> bool where
Self: Eq, Returns true if the operator is commutative for the given argument tuple.
impl AbstractRing<Additive, Multiplicative> for i8[src]
impl AbstractRing<Additive, Multiplicative> for i8fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, Returns true if the multiplication and addition operators are distributive for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
Self: Eq, [src]
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
Self: Eq, Returns true if the multiplication and addition operators are distributive for the given argument tuple. Read more
impl AbstractRing<Additive, Multiplicative> for i16[src]
impl AbstractRing<Additive, Multiplicative> for i16fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, Returns true if the multiplication and addition operators are distributive for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
Self: Eq, [src]
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
Self: Eq, Returns true if the multiplication and addition operators are distributive for the given argument tuple. Read more
impl AbstractRing<Additive, Multiplicative> for i32[src]
impl AbstractRing<Additive, Multiplicative> for i32fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, Returns true if the multiplication and addition operators are distributive for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
Self: Eq, [src]
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
Self: Eq, Returns true if the multiplication and addition operators are distributive for the given argument tuple. Read more
impl AbstractRing<Additive, Multiplicative> for i64[src]
impl AbstractRing<Additive, Multiplicative> for i64fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, Returns true if the multiplication and addition operators are distributive for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
Self: Eq, [src]
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
Self: Eq, Returns true if the multiplication and addition operators are distributive for the given argument tuple. Read more
impl AbstractRing<Additive, Multiplicative> for isize[src]
impl AbstractRing<Additive, Multiplicative> for isizefn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, Returns true if the multiplication and addition operators are distributive for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
Self: Eq, [src]
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
Self: Eq, Returns true if the multiplication and addition operators are distributive for the given argument tuple. Read more
impl AbstractRing<Additive, Multiplicative> for f32[src]
impl AbstractRing<Additive, Multiplicative> for f32fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, Returns true if the multiplication and addition operators are distributive for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
Self: Eq, [src]
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
Self: Eq, Returns true if the multiplication and addition operators are distributive for the given argument tuple. Read more
impl AbstractRing<Additive, Multiplicative> for f64[src]
impl AbstractRing<Additive, Multiplicative> for f64fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, Returns true if the multiplication and addition operators are distributive for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
Self: Eq, [src]
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
Self: Eq, Returns true if the multiplication and addition operators are distributive for the given argument tuple. Read more
impl<N: Num + Clone + ClosedNeg + AbstractRing> AbstractRing<Additive, Multiplicative> for Complex<N>[src]
impl<N: Num + Clone + ClosedNeg + AbstractRing> AbstractRing<Additive, Multiplicative> for Complex<N>fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
Self: RelativeEq, Returns true if the multiplication and addition operators are distributive for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
Self: Eq, [src]
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
Self: Eq, Returns true if the multiplication and addition operators are distributive for the given argument tuple. Read more
impl AbstractRingCommutative<Additive, Multiplicative> for i8[src]
impl AbstractRingCommutative<Additive, Multiplicative> for i8fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, Returns true if the multiplication operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
Self: Eq, [src]
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
Self: Eq, Returns true if the multiplication operator is commutative for the given argument tuple.
impl AbstractRingCommutative<Additive, Multiplicative> for i16[src]
impl AbstractRingCommutative<Additive, Multiplicative> for i16fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, Returns true if the multiplication operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
Self: Eq, [src]
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
Self: Eq, Returns true if the multiplication operator is commutative for the given argument tuple.
impl AbstractRingCommutative<Additive, Multiplicative> for i32[src]
impl AbstractRingCommutative<Additive, Multiplicative> for i32fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, Returns true if the multiplication operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
Self: Eq, [src]
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
Self: Eq, Returns true if the multiplication operator is commutative for the given argument tuple.
impl AbstractRingCommutative<Additive, Multiplicative> for i64[src]
impl AbstractRingCommutative<Additive, Multiplicative> for i64fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, Returns true if the multiplication operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
Self: Eq, [src]
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
Self: Eq, Returns true if the multiplication operator is commutative for the given argument tuple.
impl AbstractRingCommutative<Additive, Multiplicative> for isize[src]
impl AbstractRingCommutative<Additive, Multiplicative> for isizefn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, Returns true if the multiplication operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
Self: Eq, [src]
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
Self: Eq, Returns true if the multiplication operator is commutative for the given argument tuple.
impl AbstractRingCommutative<Additive, Multiplicative> for f32[src]
impl AbstractRingCommutative<Additive, Multiplicative> for f32fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, Returns true if the multiplication operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
Self: Eq, [src]
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
Self: Eq, Returns true if the multiplication operator is commutative for the given argument tuple.
impl AbstractRingCommutative<Additive, Multiplicative> for f64[src]
impl AbstractRingCommutative<Additive, Multiplicative> for f64fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, Returns true if the multiplication operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
Self: Eq, [src]
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
Self: Eq, Returns true if the multiplication operator is commutative for the given argument tuple.
impl<N: Num + Clone + ClosedNeg + AbstractRingCommutative> AbstractRingCommutative<Additive, Multiplicative> for Complex<N>[src]
impl<N: Num + Clone + ClosedNeg + AbstractRingCommutative> AbstractRingCommutative<Additive, Multiplicative> for Complex<N>fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, [src]
fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
Self: RelativeEq, Returns true if the multiplication operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
Self: Eq, [src]
fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
Self: Eq, Returns true if the multiplication operator is commutative for the given argument tuple.
impl AbstractField<Additive, Multiplicative> for f32[src]
impl AbstractField<Additive, Multiplicative> for f32impl AbstractField<Additive, Multiplicative> for f64[src]
impl AbstractField<Additive, Multiplicative> for f64impl<N: Num + Clone + ClosedNeg + AbstractField> AbstractField<Additive, Multiplicative> for Complex<N>[src]
impl<N: Num + Clone + ClosedNeg + AbstractField> AbstractField<Additive, Multiplicative> for Complex<N>impl Identity<Multiplicative> for u8[src]
impl Identity<Multiplicative> for u8impl Identity<Multiplicative> for u16[src]
impl Identity<Multiplicative> for u16impl Identity<Multiplicative> for u32[src]
impl Identity<Multiplicative> for u32impl Identity<Multiplicative> for u64[src]
impl Identity<Multiplicative> for u64impl Identity<Multiplicative> for usize[src]
impl Identity<Multiplicative> for usizeimpl Identity<Multiplicative> for i8[src]
impl Identity<Multiplicative> for i8impl Identity<Multiplicative> for i16[src]
impl Identity<Multiplicative> for i16impl Identity<Multiplicative> for i32[src]
impl Identity<Multiplicative> for i32impl Identity<Multiplicative> for i64[src]
impl Identity<Multiplicative> for i64impl Identity<Multiplicative> for isize[src]
impl Identity<Multiplicative> for isizeimpl Identity<Multiplicative> for f32[src]
impl Identity<Multiplicative> for f32impl Identity<Multiplicative> for f64[src]
impl Identity<Multiplicative> for f64impl<N: Num + Clone> Identity<Multiplicative> for Complex<N>[src]
impl<N: Num + Clone> Identity<Multiplicative> for Complex<N>impl Operator for Multiplicative[src]
impl Operator for Multiplicativefn operator_token() -> Self[src]
fn operator_token() -> Selfimpl Inverse<Multiplicative> for f32[src]
impl Inverse<Multiplicative> for f32impl Inverse<Multiplicative> for f64[src]
impl Inverse<Multiplicative> for f64impl<N: Num + Clone + ClosedNeg> Inverse<Multiplicative> for Complex<N>[src]
impl<N: Num + Clone + ClosedNeg> Inverse<Multiplicative> for Complex<N>impl Clone for Multiplicative[src]
impl Clone for Multiplicativefn clone(&self) -> Multiplicative[src]
fn clone(&self) -> Multiplicativefn clone_from(&mut self, source: &Self)1.0.0[src]
fn clone_from(&mut self, source: &Self)Performs copy-assignment from source. Read more
impl Copy for Multiplicative[src]
impl Copy for MultiplicativeAuto Trait Implementations
impl Send for Multiplicative
impl Send for Multiplicativeimpl Sync for Multiplicative
impl Sync for MultiplicativeBlanket Implementations
impl<T, U> Into for T where
U: From<T>, [src]
impl<T, U> Into for T where
U: From<T>, impl<T> ToOwned for T where
T: Clone, [src]
impl<T> ToOwned for T where
T: Clone, impl<T> From for T[src]
impl<T> From for Timpl<T, U> TryFrom for T where
T: From<U>, [src]
impl<T, U> TryFrom for T where
T: From<U>, type Error = !
try_from)The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>impl<T> Borrow for T where
T: ?Sized, [src]
impl<T> Borrow for T where
T: ?Sized, impl<T> Any for T where
T: 'static + ?Sized, [src]
impl<T> Any for T where
T: 'static + ?Sized, fn get_type_id(&self) -> TypeId[src]
fn get_type_id(&self) -> TypeIdimpl<T, U> TryInto for T where
U: TryFrom<T>, [src]
impl<T, U> TryInto for T where
U: TryFrom<T>, type Error = <U as TryFrom<T>>::Error
try_from)The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>[src]
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>impl<T> BorrowMut for T where
T: ?Sized, [src]
impl<T> BorrowMut for T where
T: ?Sized, fn borrow_mut(&mut self) -> &mut T[src]
fn borrow_mut(&mut self) -> &mut T