Struct nalgebra::linalg::SVD [−][src]
pub struct SVD<N: ComplexField, R: DimMin<C>, C: Dim> where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>>, { pub u: Option<MatrixMN<N, R, DimMinimum<R, C>>>, pub v_t: Option<MatrixMN<N, DimMinimum<R, C>, C>>, pub singular_values: VectorN<N::RealField, DimMinimum<R, C>>, }
Singular Value Decomposition of a general matrix.
Fields
u: Option<MatrixMN<N, R, DimMinimum<R, C>>>
The left-singular vectors U
of this SVD.
v_t: Option<MatrixMN<N, DimMinimum<R, C>, C>>
The right-singular vectors V^t
of this SVD.
singular_values: VectorN<N::RealField, DimMinimum<R, C>>
The singular values of this SVD.
Implementations
impl<N: ComplexField, R: DimMin<C>, C: Dim> SVD<N, R, C> where
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, C> + Allocator<N, R> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>> + Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>> + Allocator<N::RealField, DimDiff<DimMinimum<R, C>, U1>>,
[src]
impl<N: ComplexField, R: DimMin<C>, C: Dim> SVD<N, R, C> where
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> + Allocator<N, C> + Allocator<N, R> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>> + Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>> + Allocator<N::RealField, DimDiff<DimMinimum<R, C>, U1>>,
[src]pub fn new(matrix: MatrixMN<N, R, C>, compute_u: bool, compute_v: bool) -> Self
[src][−]
Computes the Singular Value Decomposition of matrix
using implicit shift.
pub fn try_new(
matrix: MatrixMN<N, R, C>,
compute_u: bool,
compute_v: bool,
eps: N::RealField,
max_niter: usize
) -> Option<Self>
[src][−]
matrix: MatrixMN<N, R, C>,
compute_u: bool,
compute_v: bool,
eps: N::RealField,
max_niter: usize
) -> Option<Self>
Attempts to compute the Singular Value Decomposition of matrix
using implicit shift.
Arguments
compute_u
− set this totrue
to enable the computation of left-singular vectors.compute_v
− set this totrue
to enable the computation of right-singular vectors.eps
− tolerance used to determine when a value converged to 0.max_niter
− maximum total number of iterations performed by the algorithm. If this number of iteration is exceeded,None
is returned. Ifniter == 0
, then the algorithm continues indefinitely until convergence.
pub fn rank(&self, eps: N::RealField) -> usize
[src][−]
Computes the rank of the decomposed matrix, i.e., the number of singular values greater
than eps
.
pub fn recompose(self) -> Result<MatrixMN<N, R, C>, &'static str>
[src][−]
Rebuild the original matrix.
This is useful if some of the singular values have been manually modified.
Returns Err
if the right- and left- singular vectors have not been
computed at construction-time.
pub fn pseudo_inverse(
self,
eps: N::RealField
) -> Result<MatrixMN<N, C, R>, &'static str> where
DefaultAllocator: Allocator<N, C, R>,
[src][−]
self,
eps: N::RealField
) -> Result<MatrixMN<N, C, R>, &'static str> where
DefaultAllocator: Allocator<N, C, R>,
Computes the pseudo-inverse of the decomposed matrix.
Any singular value smaller than eps
is assumed to be zero.
Returns Err
if the right- and left- singular vectors have not
been computed at construction-time.
pub fn solve<R2: Dim, C2: Dim, S2>(
&self,
b: &Matrix<N, R2, C2, S2>,
eps: N::RealField
) -> Result<MatrixMN<N, C, C2>, &'static str> where
S2: Storage<N, R2, C2>,
DefaultAllocator: Allocator<N, C, C2> + Allocator<N, DimMinimum<R, C>, C2>,
ShapeConstraint: SameNumberOfRows<R, R2>,
[src][−]
&self,
b: &Matrix<N, R2, C2, S2>,
eps: N::RealField
) -> Result<MatrixMN<N, C, C2>, &'static str> where
S2: Storage<N, R2, C2>,
DefaultAllocator: Allocator<N, C, C2> + Allocator<N, DimMinimum<R, C>, C2>,
ShapeConstraint: SameNumberOfRows<R, R2>,
Solves the system self * x = b
where self
is the decomposed matrix and x
the unknown.
Any singular value smaller than eps
is assumed to be zero.
Returns Err
if the singular vectors U
and V
have not been computed.
Trait Implementations
impl<N: Clone + ComplexField, R: Clone + DimMin<C>, C: Clone + Dim> Clone for SVD<N, R, C> where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>>,
N::RealField: Clone,
[src]
impl<N: Clone + ComplexField, R: Clone + DimMin<C>, C: Clone + Dim> Clone for SVD<N, R, C> where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>>,
N::RealField: Clone,
[src]impl<N: Debug + ComplexField, R: Debug + DimMin<C>, C: Debug + Dim> Debug for SVD<N, R, C> where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>>,
N::RealField: Debug,
[src]
impl<N: Debug + ComplexField, R: Debug + DimMin<C>, C: Debug + Dim> Debug for SVD<N, R, C> where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>>,
N::RealField: Debug,
[src]impl<'de, N: ComplexField, R: DimMin<C>, C: Dim> Deserialize<'de> for SVD<N, R, C> where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>>,
DefaultAllocator: Allocator<N::RealField, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>>,
MatrixMN<N, R, DimMinimum<R, C>>: Deserialize<'de>,
MatrixMN<N, DimMinimum<R, C>, C>: Deserialize<'de>,
VectorN<N::RealField, DimMinimum<R, C>>: Deserialize<'de>,
[src]
impl<'de, N: ComplexField, R: DimMin<C>, C: Dim> Deserialize<'de> for SVD<N, R, C> where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>>,
DefaultAllocator: Allocator<N::RealField, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>>,
MatrixMN<N, R, DimMinimum<R, C>>: Deserialize<'de>,
MatrixMN<N, DimMinimum<R, C>, C>: Deserialize<'de>,
VectorN<N::RealField, DimMinimum<R, C>>: Deserialize<'de>,
[src]fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error> where
__D: Deserializer<'de>,
[src][−]
__D: Deserializer<'de>,
impl<N: ComplexField, R: DimMin<C>, C: Dim> Serialize for SVD<N, R, C> where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>>,
DefaultAllocator: Allocator<N::RealField, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>>,
MatrixMN<N, R, DimMinimum<R, C>>: Serialize,
MatrixMN<N, DimMinimum<R, C>, C>: Serialize,
VectorN<N::RealField, DimMinimum<R, C>>: Serialize,
[src]
impl<N: ComplexField, R: DimMin<C>, C: Dim> Serialize for SVD<N, R, C> where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>>,
DefaultAllocator: Allocator<N::RealField, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>>,
MatrixMN<N, R, DimMinimum<R, C>>: Serialize,
MatrixMN<N, DimMinimum<R, C>, C>: Serialize,
VectorN<N::RealField, DimMinimum<R, C>>: Serialize,
[src]impl<N: ComplexField, R: DimMin<C>, C: Dim> Copy for SVD<N, R, C> where
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>>,
MatrixMN<N, R, DimMinimum<R, C>>: Copy,
MatrixMN<N, DimMinimum<R, C>, C>: Copy,
VectorN<N::RealField, DimMinimum<R, C>>: Copy,
[src]
DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>>,
MatrixMN<N, R, DimMinimum<R, C>>: Copy,
MatrixMN<N, DimMinimum<R, C>, C>: Copy,
VectorN<N::RealField, DimMinimum<R, C>>: Copy,
Auto Trait Implementations
impl<N, R, C> !RefUnwindSafe for SVD<N, R, C>
impl<N, R, C> !Send for SVD<N, R, C>
impl<N, R, C> !Sync for SVD<N, R, C>
impl<N, R, C> !Unpin for SVD<N, R, C>
impl<N, R, C> !UnwindSafe for SVD<N, R, C>
Blanket Implementations
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
[src]
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
[src]