Struct nalgebra::linalg::SVD[][src]

pub struct SVD<N: ComplexField, R: DimMin<C>, C: Dim> where
    DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>>, 
{ pub u: Option<MatrixMN<N, R, DimMinimum<R, C>>>, pub v_t: Option<MatrixMN<N, DimMinimum<R, C>, C>>, pub singular_values: VectorN<N::RealField, DimMinimum<R, C>>, }
[]

Singular Value Decomposition of a general matrix.

Fields

u: Option<MatrixMN<N, R, DimMinimum<R, C>>>
[]

The left-singular vectors U of this SVD.

v_t: Option<MatrixMN<N, DimMinimum<R, C>, C>>
[]

The right-singular vectors V^t of this SVD.

singular_values: VectorN<N::RealField, DimMinimum<R, C>>
[]

The singular values of this SVD.

Implementations

impl<N: ComplexField, R: DimMin<C>, C: Dim> SVD<N, R, C> where
    DimMinimum<R, C>: DimSub<U1>,
    DefaultAllocator: Allocator<N, R, C> + Allocator<N, C> + Allocator<N, R> + Allocator<N, DimDiff<DimMinimum<R, C>, U1>> + Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>> + Allocator<N::RealField, DimDiff<DimMinimum<R, C>, U1>>, 
[src]

pub fn new(matrix: MatrixMN<N, R, C>, compute_u: bool, compute_v: bool) -> Self[src][]

Computes the Singular Value Decomposition of matrix using implicit shift.

pub fn try_new(
    matrix: MatrixMN<N, R, C>,
    compute_u: bool,
    compute_v: bool,
    eps: N::RealField,
    max_niter: usize
) -> Option<Self>
[src][]

Attempts to compute the Singular Value Decomposition of matrix using implicit shift.

Arguments

  • compute_u − set this to true to enable the computation of left-singular vectors.
  • compute_v − set this to true to enable the computation of right-singular vectors.
  • eps − tolerance used to determine when a value converged to 0.
  • max_niter − maximum total number of iterations performed by the algorithm. If this number of iteration is exceeded, None is returned. If niter == 0, then the algorithm continues indefinitely until convergence.

pub fn rank(&self, eps: N::RealField) -> usize[src][]

Computes the rank of the decomposed matrix, i.e., the number of singular values greater than eps.

pub fn recompose(self) -> Result<MatrixMN<N, R, C>, &'static str>[src][]

Rebuild the original matrix.

This is useful if some of the singular values have been manually modified. Returns Err if the right- and left- singular vectors have not been computed at construction-time.

pub fn pseudo_inverse(
    self,
    eps: N::RealField
) -> Result<MatrixMN<N, C, R>, &'static str> where
    DefaultAllocator: Allocator<N, C, R>, 
[src][]

Computes the pseudo-inverse of the decomposed matrix.

Any singular value smaller than eps is assumed to be zero. Returns Err if the right- and left- singular vectors have not been computed at construction-time.

pub fn solve<R2: Dim, C2: Dim, S2>(
    &self,
    b: &Matrix<N, R2, C2, S2>,
    eps: N::RealField
) -> Result<MatrixMN<N, C, C2>, &'static str> where
    S2: Storage<N, R2, C2>,
    DefaultAllocator: Allocator<N, C, C2> + Allocator<N, DimMinimum<R, C>, C2>,
    ShapeConstraint: SameNumberOfRows<R, R2>, 
[src][]

Solves the system self * x = b where self is the decomposed matrix and x the unknown.

Any singular value smaller than eps is assumed to be zero. Returns Err if the singular vectors U and V have not been computed.

Trait Implementations

impl<N: Clone + ComplexField, R: Clone + DimMin<C>, C: Clone + Dim> Clone for SVD<N, R, C> where
    DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>>,
    N::RealField: Clone
[src]

impl<N: Debug + ComplexField, R: Debug + DimMin<C>, C: Debug + Dim> Debug for SVD<N, R, C> where
    DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>>,
    N::RealField: Debug
[src]

impl<'de, N: ComplexField, R: DimMin<C>, C: Dim> Deserialize<'de> for SVD<N, R, C> where
    DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>>,
    DefaultAllocator: Allocator<N::RealField, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>>,
    MatrixMN<N, R, DimMinimum<R, C>>: Deserialize<'de>,
    MatrixMN<N, DimMinimum<R, C>, C>: Deserialize<'de>,
    VectorN<N::RealField, DimMinimum<R, C>>: Deserialize<'de>, 
[src]

impl<N: ComplexField, R: DimMin<C>, C: Dim> Serialize for SVD<N, R, C> where
    DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>>,
    DefaultAllocator: Allocator<N::RealField, DimMinimum<R, C>> + Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>>,
    MatrixMN<N, R, DimMinimum<R, C>>: Serialize,
    MatrixMN<N, DimMinimum<R, C>, C>: Serialize,
    VectorN<N::RealField, DimMinimum<R, C>>: Serialize
[src]

impl<N: ComplexField, R: DimMin<C>, C: Dim> Copy for SVD<N, R, C> where
    DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> + Allocator<N, R, DimMinimum<R, C>> + Allocator<N::RealField, DimMinimum<R, C>>,
    MatrixMN<N, R, DimMinimum<R, C>>: Copy,
    MatrixMN<N, DimMinimum<R, C>, C>: Copy,
    VectorN<N::RealField, DimMinimum<R, C>>: Copy
[src]

Auto Trait Implementations

impl<N, R, C> !RefUnwindSafe for SVD<N, R, C>

impl<N, R, C> !Send for SVD<N, R, C>

impl<N, R, C> !Sync for SVD<N, R, C>

impl<N, R, C> !Unpin for SVD<N, R, C>

impl<N, R, C> !UnwindSafe for SVD<N, R, C>

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> Same<T> for T[src]

type Output = T

Should always be Self

impl<SS, SP> SupersetOf<SS> for SP where
    SS: SubsetOf<SP>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<V, T> VZip<V> for T where
    V: MultiLane<T>, 
[src]