Struct rin::scene::physics::Offset [−][src]
Methods from Deref<Target = Isometry<f32, U3, Unit<Quaternion<f32>>>>
#[must_use = "Did you mean to use inverse_mut()?"]pub fn inverse(&self) -> Isometry<N, D, R>
[src]
Inverts self
.
Example
let iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2); let inv = iso.inverse(); let pt = Point2::new(1.0, 2.0); assert_eq!(inv * (iso * pt), pt);
pub fn inverse_mut(&mut self)
[src]
Inverts self
in-place.
Example
let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2); let pt = Point2::new(1.0, 2.0); let transformed_pt = iso * pt; iso.inverse_mut(); assert_eq!(iso * transformed_pt, pt);
pub fn inv_mul(&self, rhs: &Isometry<N, D, R>) -> Isometry<N, D, R>
[src]
Computes self.inverse() * rhs
in a more efficient way.
Example
let mut iso1 = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2); let mut iso2 = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_4); assert_eq!(iso1.inverse() * iso2, iso1.inv_mul(&iso2));
pub fn append_translation_mut(&mut self, t: &Translation<N, D>)
[src]
Appends to self
the given translation in-place.
Example
let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2); let tra = Translation2::new(3.0, 4.0); // Same as `iso = tra * iso`. iso.append_translation_mut(&tra); assert_eq!(iso.translation, Translation2::new(4.0, 6.0));
pub fn append_rotation_mut(&mut self, r: &R)
[src]
Appends to self
the given rotation in-place.
Example
let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::PI / 6.0); let rot = UnitComplex::new(f32::consts::PI / 2.0); // Same as `iso = rot * iso`. iso.append_rotation_mut(&rot); assert_relative_eq!(iso, Isometry2::new(Vector2::new(-2.0, 1.0), f32::consts::PI * 2.0 / 3.0), epsilon = 1.0e-6);
pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &Point<N, D>)
[src]
Appends in-place to self
a rotation centered at the point p
, i.e., the rotation that
lets p
invariant.
Example
let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2); let rot = UnitComplex::new(f32::consts::FRAC_PI_2); let pt = Point2::new(1.0, 0.0); iso.append_rotation_wrt_point_mut(&rot, &pt); assert_relative_eq!(iso * pt, Point2::new(-2.0, 0.0), epsilon = 1.0e-6);
pub fn append_rotation_wrt_center_mut(&mut self, r: &R)
[src]
Appends in-place to self
a rotation centered at the point with coordinates
self.translation
.
Example
let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2); let rot = UnitComplex::new(f32::consts::FRAC_PI_2); iso.append_rotation_wrt_center_mut(&rot); // The translation part should not have changed. assert_eq!(iso.translation.vector, Vector2::new(1.0, 2.0)); assert_eq!(iso.rotation, UnitComplex::new(f32::consts::PI));
pub fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
Transform the given point by this isometry.
This is the same as the multiplication self * pt
.
Example
let tra = Translation3::new(0.0, 0.0, 3.0); let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2); let iso = Isometry3::from_parts(tra, rot); let transformed_point = iso.transform_point(&Point3::new(1.0, 2.0, 3.0)); assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, 2.0), epsilon = 1.0e-6);
pub fn transform_vector(
&self,
v: &Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>
) -> Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>
[src]
&self,
v: &Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>
) -> Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>
Transform the given vector by this isometry, ignoring the translation component of the isometry.
This is the same as the multiplication self * v
.
Example
let tra = Translation3::new(0.0, 0.0, 3.0); let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2); let iso = Isometry3::from_parts(tra, rot); let transformed_point = iso.transform_vector(&Vector3::new(1.0, 2.0, 3.0)); assert_relative_eq!(transformed_point, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
pub fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
Transform the given point by the inverse of this isometry. This may be less expensive than computing the entire isometry inverse and then transforming the point.
Example
let tra = Translation3::new(0.0, 0.0, 3.0); let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2); let iso = Isometry3::from_parts(tra, rot); let transformed_point = iso.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0)); assert_relative_eq!(transformed_point, Point3::new(0.0, 2.0, 1.0), epsilon = 1.0e-6);
pub fn inverse_transform_vector(
&self,
v: &Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>
) -> Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>
[src]
&self,
v: &Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>
) -> Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>
Transform the given vector by the inverse of this isometry, ignoring the translation component of the isometry. This may be less expensive than computing the entire isometry inverse and then transforming the point.
Example
let tra = Translation3::new(0.0, 0.0, 3.0); let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2); let iso = Isometry3::from_parts(tra, rot); let transformed_point = iso.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0)); assert_relative_eq!(transformed_point, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
pub fn inverse_transform_unit_vector(
&self,
v: &Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>
) -> Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>
[src]
&self,
v: &Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>
) -> Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>
Transform the given unit vector by the inverse of this isometry, ignoring the translation component of the isometry. This may be less expensive than computing the entire isometry inverse and then transforming the point.
Example
let tra = Translation3::new(0.0, 0.0, 3.0); let rot = UnitQuaternion::from_scaled_axis(Vector3::z() * f32::consts::FRAC_PI_2); let iso = Isometry3::from_parts(tra, rot); let transformed_point = iso.inverse_transform_unit_vector(&Vector3::x_axis()); assert_relative_eq!(transformed_point, -Vector3::y_axis(), epsilon = 1.0e-6);
pub fn to_homogeneous(
&self
) -> Matrix<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer> where
D: DimNameAdd<U1>,
R: SubsetOf<Matrix<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>>,
DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
[src]
&self
) -> Matrix<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer> where
D: DimNameAdd<U1>,
R: SubsetOf<Matrix<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>>,
DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
Converts this isometry into its equivalent homogeneous transformation matrix.
This is the same as self.to_matrix()
.
Example
let iso = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_6); let expected = Matrix3::new(0.8660254, -0.5, 10.0, 0.5, 0.8660254, 20.0, 0.0, 0.0, 1.0); assert_relative_eq!(iso.to_homogeneous(), expected, epsilon = 1.0e-6);
pub fn to_matrix(
&self
) -> Matrix<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer> where
D: DimNameAdd<U1>,
R: SubsetOf<Matrix<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>>,
DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
[src]
&self
) -> Matrix<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer> where
D: DimNameAdd<U1>,
R: SubsetOf<Matrix<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>>,
DefaultAllocator: Allocator<N, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>,
Converts this isometry into its equivalent homogeneous transformation matrix.
This is the same as self.to_homogeneous()
.
Example
let iso = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_6); let expected = Matrix3::new(0.8660254, -0.5, 10.0, 0.5, 0.8660254, 20.0, 0.0, 0.0, 1.0); assert_relative_eq!(iso.to_matrix(), expected, epsilon = 1.0e-6);
pub fn lerp_slerp(
&self,
other: &Isometry<N, U3, Unit<Quaternion<N>>>,
t: N
) -> Isometry<N, U3, Unit<Quaternion<N>>> where
N: RealField,
[src]
&self,
other: &Isometry<N, U3, Unit<Quaternion<N>>>,
t: N
) -> Isometry<N, U3, Unit<Quaternion<N>>> where
N: RealField,
Interpolates between two isometries using a linear interpolation for the translation part, and a spherical interpolation for the rotation part.
Panics if the angle between both rotations is 180 degrees (in which case the interpolation
is not well-defined). Use .try_lerp_slerp
instead to avoid the panic.
Examples:
let t1 = Translation3::new(1.0, 2.0, 3.0); let t2 = Translation3::new(4.0, 8.0, 12.0); let q1 = UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0); let q2 = UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0); let iso1 = Isometry3::from_parts(t1, q1); let iso2 = Isometry3::from_parts(t2, q2); let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0); assert_eq!(iso3.translation.vector, Vector3::new(2.0, 4.0, 6.0)); assert_eq!(iso3.rotation.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
pub fn try_lerp_slerp(
&self,
other: &Isometry<N, U3, Unit<Quaternion<N>>>,
t: N,
epsilon: N
) -> Option<Isometry<N, U3, Unit<Quaternion<N>>>> where
N: RealField,
[src]
&self,
other: &Isometry<N, U3, Unit<Quaternion<N>>>,
t: N,
epsilon: N
) -> Option<Isometry<N, U3, Unit<Quaternion<N>>>> where
N: RealField,
Attempts to interpolate between two isometries using a linear interpolation for the translation part, and a spherical interpolation for the rotation part.
Retuns None
if the angle between both rotations is 180 degrees (in which case the interpolation
is not well-defined).
Examples:
let t1 = Translation3::new(1.0, 2.0, 3.0); let t2 = Translation3::new(4.0, 8.0, 12.0); let q1 = UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0); let q2 = UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0); let iso1 = Isometry3::from_parts(t1, q1); let iso2 = Isometry3::from_parts(t2, q2); let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0); assert_eq!(iso3.translation.vector, Vector3::new(2.0, 4.0, 6.0)); assert_eq!(iso3.rotation.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
pub fn lerp_slerp(
&self,
other: &Isometry<N, U3, Rotation<N, U3>>,
t: N
) -> Isometry<N, U3, Rotation<N, U3>> where
N: RealField,
[src]
&self,
other: &Isometry<N, U3, Rotation<N, U3>>,
t: N
) -> Isometry<N, U3, Rotation<N, U3>> where
N: RealField,
Interpolates between two isometries using a linear interpolation for the translation part, and a spherical interpolation for the rotation part.
Panics if the angle between both rotations is 180 degrees (in which case the interpolation
is not well-defined). Use .try_lerp_slerp
instead to avoid the panic.
Examples:
let t1 = Translation3::new(1.0, 2.0, 3.0); let t2 = Translation3::new(4.0, 8.0, 12.0); let q1 = Rotation3::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0); let q2 = Rotation3::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0); let iso1 = IsometryMatrix3::from_parts(t1, q1); let iso2 = IsometryMatrix3::from_parts(t2, q2); let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0); assert_eq!(iso3.translation.vector, Vector3::new(2.0, 4.0, 6.0)); assert_eq!(iso3.rotation.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
pub fn try_lerp_slerp(
&self,
other: &Isometry<N, U3, Rotation<N, U3>>,
t: N,
epsilon: N
) -> Option<Isometry<N, U3, Rotation<N, U3>>> where
N: RealField,
[src]
&self,
other: &Isometry<N, U3, Rotation<N, U3>>,
t: N,
epsilon: N
) -> Option<Isometry<N, U3, Rotation<N, U3>>> where
N: RealField,
Attempts to interpolate between two isometries using a linear interpolation for the translation part, and a spherical interpolation for the rotation part.
Retuns None
if the angle between both rotations is 180 degrees (in which case the interpolation
is not well-defined).
Examples:
let t1 = Translation3::new(1.0, 2.0, 3.0); let t2 = Translation3::new(4.0, 8.0, 12.0); let q1 = Rotation3::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0); let q2 = Rotation3::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0); let iso1 = IsometryMatrix3::from_parts(t1, q1); let iso2 = IsometryMatrix3::from_parts(t2, q2); let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0); assert_eq!(iso3.translation.vector, Vector3::new(2.0, 4.0, 6.0)); assert_eq!(iso3.rotation.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
pub fn lerp_slerp(
&self,
other: &Isometry<N, U2, Unit<Complex<N>>>,
t: N
) -> Isometry<N, U2, Unit<Complex<N>>> where
N: RealField,
[src]
&self,
other: &Isometry<N, U2, Unit<Complex<N>>>,
t: N
) -> Isometry<N, U2, Unit<Complex<N>>> where
N: RealField,
Interpolates between two isometries using a linear interpolation for the translation part, and a spherical interpolation for the rotation part.
Panics if the angle between both rotations is 180 degrees (in which case the interpolation
is not well-defined). Use .try_lerp_slerp
instead to avoid the panic.
Examples:
let t1 = Translation2::new(1.0, 2.0); let t2 = Translation2::new(4.0, 8.0); let q1 = UnitComplex::new(std::f32::consts::FRAC_PI_4); let q2 = UnitComplex::new(-std::f32::consts::PI); let iso1 = Isometry2::from_parts(t1, q1); let iso2 = Isometry2::from_parts(t2, q2); let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0); assert_eq!(iso3.translation.vector, Vector2::new(2.0, 4.0)); assert_relative_eq!(iso3.rotation.angle(), std::f32::consts::FRAC_PI_2);
pub fn lerp_slerp(
&self,
other: &Isometry<N, U2, Rotation<N, U2>>,
t: N
) -> Isometry<N, U2, Rotation<N, U2>> where
N: RealField,
[src]
&self,
other: &Isometry<N, U2, Rotation<N, U2>>,
t: N
) -> Isometry<N, U2, Rotation<N, U2>> where
N: RealField,
Interpolates between two isometries using a linear interpolation for the translation part, and a spherical interpolation for the rotation part.
Panics if the angle between both rotations is 180 degrees (in which case the interpolation
is not well-defined). Use .try_lerp_slerp
instead to avoid the panic.
Examples:
let t1 = Translation2::new(1.0, 2.0); let t2 = Translation2::new(4.0, 8.0); let q1 = Rotation2::new(std::f32::consts::FRAC_PI_4); let q2 = Rotation2::new(-std::f32::consts::PI); let iso1 = IsometryMatrix2::from_parts(t1, q1); let iso2 = IsometryMatrix2::from_parts(t2, q2); let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0); assert_eq!(iso3.translation.vector, Vector2::new(2.0, 4.0)); assert_relative_eq!(iso3.rotation.angle(), std::f32::consts::FRAC_PI_2);
Trait Implementations
impl<'a> DebugParameter for Offset
[src]
impl<'a> DebugParameter for Offset
[src]pub fn debug<S>(
&self,
serializer: S
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error> where
S: Serializer,
[src]
&self,
serializer: S
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error> where
S: Serializer,
impl Copy for Offset
[src]
Auto Trait Implementations
impl RefUnwindSafe for Offset
impl Send for Offset
impl Sync for Offset
impl Unpin for Offset
impl UnwindSafe for Offset
Blanket Implementations
impl<T> DowncastSync for T where
T: Any + Send + Sync,
[src]
impl<T> DowncastSync for T where
T: Any + Send + Sync,
[src]impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
[src]
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
[src]pub fn to_subset(&self) -> Option<SS>
[src]
pub fn is_in_subset(&self) -> bool
[src]
pub fn to_subset_unchecked(&self) -> SS
[src]
pub fn from_subset(element: &SS) -> SP
[src]
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
[src]
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
[src]pub fn to_subset(&self) -> Option<SS>
[src]
pub fn is_in_subset(&self) -> bool
[src]
pub fn to_subset_unchecked(&self) -> SS
[src]
pub fn from_subset(element: &SS) -> SP
[src]
impl<C> ComponentSend for C where
C: Component + Send,
[src]
C: Component + Send,
impl<C> ComponentThreadLocal for C where
C: Component,
[src]
C: Component,
impl<T> Slottable for T where
T: Copy,
[src]
T: Copy,