[][src]Trait alga::general::AbstractRing

pub trait AbstractRing<A: Operator = Additive, M: Operator = Multiplicative>: AbstractGroupAbelian<A> + AbstractMonoid<M> {
    fn prop_mul_and_add_are_distributive_approx(
        args: (Self, Self, Self)
    ) -> bool
    where
        Self: RelativeEq
, { ... }
fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool
    where
        Self: Eq
, { ... } }

A ring is the combination of an abelian group and a multiplicative monoid structure.

A ring is equipped with:

Provided Methods

Returns true if the multiplication and addition operators are distributive for the given argument tuple. Approximate equality is used for verifications.

Returns true if the multiplication and addition operators are distributive for the given argument tuple.

Implementations on Foreign Types

impl AbstractRing<Additive, Multiplicative> for i8
[src]

impl AbstractRing<Additive, Multiplicative> for i16
[src]

impl AbstractRing<Additive, Multiplicative> for i32
[src]

impl AbstractRing<Additive, Multiplicative> for i64
[src]

impl AbstractRing<Additive, Multiplicative> for isize
[src]

impl AbstractRing<Additive, Multiplicative> for f32
[src]

impl AbstractRing<Additive, Multiplicative> for f64
[src]

impl<N: Num + Clone + ClosedNeg + AbstractRing> AbstractRing<Additive, Multiplicative> for Complex<N>
[src]

Implementors