Struct nalgebra::geometry::Point[][src]

#[repr(C)]
pub struct Point<N: Scalar, D: DimName> where
    DefaultAllocator: Allocator<N, D>, 
{ pub coords: VectorN<N, D>, }

A point in an euclidean space.

The difference between a point and a vector is only semantic. See the user guide for details on the distinction. The most notable difference that vectors ignore translations. In particular, an Isometry2 or Isometry3 will transform points by applying a rotation and a translation on them. However, these isometries will only apply rotations to vectors (when doing isometry * vector, the translation part of the isometry is ignored).

Construction

Transformation

Transforming a point by an Isometry, rotation, etc. can be achieved by multiplication, e.g., isometry * point or rotation * point. Some of these transformation may have some other methods, e.g., isometry.inverse_transform_point(&point). See the documentation of said transformations for details.

Fields

coords: VectorN<N, D>

The coordinates of this point, i.e., the shift from the origin.

Implementations

impl<N: Scalar, D: DimName> Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

pub fn map<N2: Scalar, F: FnMut(N) -> N2>(&self, f: F) -> Point<N2, D> where
    DefaultAllocator: Allocator<N2, D>, 
[src]

Returns a point containing the result of f applied to each of its entries.

Example

let p = Point2::new(1.0, 2.0);
assert_eq!(p.map(|e| e * 10.0), Point2::new(10.0, 20.0));

// This works in any dimension.
let p = Point3::new(1.1, 2.1, 3.1);
assert_eq!(p.map(|e| e as u32), Point3::new(1, 2, 3));

pub fn apply<F: FnMut(N) -> N>(&mut self, f: F)[src]

Replaces each component of self by the result of a closure f applied on it.

Example

let mut p = Point2::new(1.0, 2.0);
p.apply(|e| e * 10.0);
assert_eq!(p, Point2::new(10.0, 20.0));

// This works in any dimension.
let mut p = Point3::new(1.0, 2.0, 3.0);
p.apply(|e| e * 10.0);
assert_eq!(p, Point3::new(10.0, 20.0, 30.0));

pub fn to_homogeneous(&self) -> VectorN<N, DimNameSum<D, U1>> where
    N: One,
    D: DimNameAdd<U1>,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>>, 
[src]

Converts this point into a vector in homogeneous coordinates, i.e., appends a 1 at the end of it.

This is the same as .into().

Example

let p = Point2::new(10.0, 20.0);
assert_eq!(p.to_homogeneous(), Vector3::new(10.0, 20.0, 1.0));

// This works in any dimension.
let p = Point3::new(10.0, 20.0, 30.0);
assert_eq!(p.to_homogeneous(), Vector4::new(10.0, 20.0, 30.0, 1.0));

pub fn from_coordinates(coords: VectorN<N, D>) -> Self[src]

👎 Deprecated:

Use Point::from(vector) instead.

Creates a new point with the given coordinates.

pub fn len(&self) -> usize[src]

The dimension of this point.

Example

let p = Point2::new(1.0, 2.0);
assert_eq!(p.len(), 2);

// This works in any dimension.
let p = Point3::new(10.0, 20.0, 30.0);
assert_eq!(p.len(), 3);

pub fn is_empty(&self) -> bool[src]

Returns true if the point contains no elements.

Example

let p = Point2::new(1.0, 2.0);
assert!(!p.is_empty());

pub fn stride(&self) -> usize[src]

👎 Deprecated:

This methods is no longer significant and will always return 1.

The stride of this point. This is the number of buffer element separating each component of this point.

pub fn iter(
    &self
) -> MatrixIter<'_, N, D, U1, <DefaultAllocator as Allocator<N, D>>::Buffer>

Notable traits for MatrixIter<'a, N, R, C, S>

impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + Storage<N, R, C>> Iterator for MatrixIter<'a, N, R, C, S> type Item = &'a N;
[src]

Iterates through this point coordinates.

Example

let p = Point3::new(1.0, 2.0, 3.0);
let mut it = p.iter().cloned();

assert_eq!(it.next(), Some(1.0));
assert_eq!(it.next(), Some(2.0));
assert_eq!(it.next(), Some(3.0));
assert_eq!(it.next(), None);

pub unsafe fn get_unchecked(&self, i: usize) -> &N[src]

Gets a reference to i-th element of this point without bound-checking.

pub fn iter_mut(
    &mut self
) -> MatrixIterMut<'_, N, D, U1, <DefaultAllocator as Allocator<N, D>>::Buffer>

Notable traits for MatrixIterMut<'a, N, R, C, S>

impl<'a, N: Scalar, R: Dim, C: Dim, S: 'a + StorageMut<N, R, C>> Iterator for MatrixIterMut<'a, N, R, C, S> type Item = &'a mut N;
[src]

Mutably iterates through this point coordinates.

Example

let mut p = Point3::new(1.0, 2.0, 3.0);

for e in p.iter_mut() {
    *e *= 10.0;
}

assert_eq!(p, Point3::new(10.0, 20.0, 30.0));

pub unsafe fn get_unchecked_mut(&mut self, i: usize) -> &mut N[src]

Gets a mutable reference to i-th element of this point without bound-checking.

pub unsafe fn swap_unchecked(&mut self, i1: usize, i2: usize)[src]

Swaps two entries without bound-checking.

impl<N: Scalar + SimdPartialOrd, D: DimName> Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

pub fn inf(&self, other: &Self) -> Point<N, D>[src]

Computes the infimum (aka. componentwise min) of two points.

pub fn sup(&self, other: &Self) -> Point<N, D>[src]

Computes the supremum (aka. componentwise max) of two points.

pub fn inf_sup(&self, other: &Self) -> (Point<N, D>, Point<N, D>)[src]

Computes the (infimum, supremum) of two points.

impl<N: Scalar, D: DimName> Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

pub unsafe fn new_uninitialized() -> Self[src]

Creates a new point with uninitialized coordinates.

pub fn origin() -> Self where
    N: Zero
[src]

Creates a new point with all coordinates equal to zero.

Example

// This works in any dimension.
// The explicit crate::<f32> type annotation may not always be needed,
// depending on the context of type inference.
let pt = Point2::<f32>::origin();
assert!(pt.x == 0.0 && pt.y == 0.0);

let pt = Point3::<f32>::origin();
assert!(pt.x == 0.0 && pt.y == 0.0 && pt.z == 0.0);

pub fn from_slice(components: &[N]) -> Self[src]

Creates a new point from a slice.

Example

let data = [ 1.0, 2.0, 3.0 ];

let pt = Point2::from_slice(&data[..2]);
assert_eq!(pt, Point2::new(1.0, 2.0));

let pt = Point3::from_slice(&data);
assert_eq!(pt, Point3::new(1.0, 2.0, 3.0));

pub fn from_homogeneous(v: VectorN<N, DimNameSum<D, U1>>) -> Option<Self> where
    N: Scalar + Zero + One + ClosedDiv,
    D: DimNameAdd<U1>,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>>, 
[src]

Creates a new point from its homogeneous vector representation.

In practice, this builds a D-dimensional points with the same first D component as v divided by the last component of v. Returns None if this divisor is zero.

Example


let coords = Vector4::new(1.0, 2.0, 3.0, 1.0);
let pt = Point3::from_homogeneous(coords);
assert_eq!(pt, Some(Point3::new(1.0, 2.0, 3.0)));

// All component of the result will be divided by the
// last component of the vector, here 2.0.
let coords = Vector4::new(1.0, 2.0, 3.0, 2.0);
let pt = Point3::from_homogeneous(coords);
assert_eq!(pt, Some(Point3::new(0.5, 1.0, 1.5)));

// Fails because the last component is zero.
let coords = Vector4::new(1.0, 2.0, 3.0, 0.0);
let pt = Point3::from_homogeneous(coords);
assert!(pt.is_none());

// Works also in other dimensions.
let coords = Vector3::new(1.0, 2.0, 1.0);
let pt = Point2::from_homogeneous(coords);
assert_eq!(pt, Some(Point2::new(1.0, 2.0)));

impl<N: Scalar> Point<N, U1>[src]

pub fn new(x: N) -> Self[src]

Initializes this point from its components.

Example

let p = Point1::new(1.0);
assert_eq!(p.x, 1.0);

impl<N: Scalar> Point<N, U2>[src]

pub fn new(x: N, y: N) -> Self[src]

Initializes this point from its components.

Example

let p = Point2::new(1.0, 2.0);
assert!(p.x == 1.0 && p.y == 2.0);

impl<N: Scalar> Point<N, U3>[src]

pub fn new(x: N, y: N, z: N) -> Self[src]

Initializes this point from its components.

Example

let p = Point3::new(1.0, 2.0, 3.0);
assert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0);

impl<N: Scalar> Point<N, U4>[src]

pub fn new(x: N, y: N, z: N, w: N) -> Self[src]

Initializes this point from its components.

Example

let p = Point4::new(1.0, 2.0, 3.0, 4.0);
assert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0);

impl<N: Scalar> Point<N, U5>[src]

pub fn new(x: N, y: N, z: N, w: N, a: N) -> Self[src]

Initializes this point from its components.

Example

let p = Point5::new(1.0, 2.0, 3.0, 4.0, 5.0);
assert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0 && p.a == 5.0);

impl<N: Scalar> Point<N, U6>[src]

pub fn new(x: N, y: N, z: N, w: N, a: N, b: N) -> Self[src]

Initializes this point from its components.

Example

let p = Point6::new(1.0, 2.0, 3.0, 4.0, 5.0, 6.0);
assert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0 && p.a == 5.0 && p.b == 6.0);

impl<N: Scalar, D: DimName> Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

pub fn xx(&self) -> Point2<N> where
    D::Value: Cmp<U0, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn xxx(&self) -> Point3<N> where
    D::Value: Cmp<U0, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn xy(&self) -> Point2<N> where
    D::Value: Cmp<U1, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn yx(&self) -> Point2<N> where
    D::Value: Cmp<U1, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn yy(&self) -> Point2<N> where
    D::Value: Cmp<U1, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn xxy(&self) -> Point3<N> where
    D::Value: Cmp<U1, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn xyx(&self) -> Point3<N> where
    D::Value: Cmp<U1, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn xyy(&self) -> Point3<N> where
    D::Value: Cmp<U1, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn yxx(&self) -> Point3<N> where
    D::Value: Cmp<U1, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn yxy(&self) -> Point3<N> where
    D::Value: Cmp<U1, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn yyx(&self) -> Point3<N> where
    D::Value: Cmp<U1, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn yyy(&self) -> Point3<N> where
    D::Value: Cmp<U1, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn xz(&self) -> Point2<N> where
    D::Value: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn yz(&self) -> Point2<N> where
    D::Value: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn zx(&self) -> Point2<N> where
    D::Value: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn zy(&self) -> Point2<N> where
    D::Value: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn zz(&self) -> Point2<N> where
    D::Value: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn xxz(&self) -> Point3<N> where
    D::Value: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn xyz(&self) -> Point3<N> where
    D::Value: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn xzx(&self) -> Point3<N> where
    D::Value: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn xzy(&self) -> Point3<N> where
    D::Value: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn xzz(&self) -> Point3<N> where
    D::Value: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn yxz(&self) -> Point3<N> where
    D::Value: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn yyz(&self) -> Point3<N> where
    D::Value: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn yzx(&self) -> Point3<N> where
    D::Value: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn yzy(&self) -> Point3<N> where
    D::Value: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn yzz(&self) -> Point3<N> where
    D::Value: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn zxx(&self) -> Point3<N> where
    D::Value: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn zxy(&self) -> Point3<N> where
    D::Value: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn zxz(&self) -> Point3<N> where
    D::Value: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn zyx(&self) -> Point3<N> where
    D::Value: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn zyy(&self) -> Point3<N> where
    D::Value: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn zyz(&self) -> Point3<N> where
    D::Value: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn zzx(&self) -> Point3<N> where
    D::Value: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn zzy(&self) -> Point3<N> where
    D::Value: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

pub fn zzz(&self) -> Point3<N> where
    D::Value: Cmp<U2, Output = Greater>, 
[src]

Builds a new point from components of self.

Trait Implementations

impl<N: Scalar + AbsDiffEq, D: DimName> AbsDiffEq<Point<N, D>> for Point<N, D> where
    DefaultAllocator: Allocator<N, D>,
    N::Epsilon: Copy
[src]

type Epsilon = N::Epsilon

Used for specifying relative comparisons.

impl<'a, 'b, N, D1: DimName, D2: Dim, SB: Storage<N, D2>> Add<&'b Matrix<N, D2, U1, SB>> for &'a Point<N, D1> where
    N: Scalar + ClosedAdd,
    DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = Point<N, D1>

The resulting type after applying the + operator.

impl<'b, N, D1: DimName, D2: Dim, SB: Storage<N, D2>> Add<&'b Matrix<N, D2, U1, SB>> for Point<N, D1> where
    N: Scalar + ClosedAdd,
    DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = Point<N, D1>

The resulting type after applying the + operator.

impl<'a, N, D1: DimName, D2: Dim, SB: Storage<N, D2>> Add<Matrix<N, D2, U1, SB>> for &'a Point<N, D1> where
    N: Scalar + ClosedAdd,
    DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = Point<N, D1>

The resulting type after applying the + operator.

impl<N, D1: DimName, D2: Dim, SB: Storage<N, D2>> Add<Matrix<N, D2, U1, SB>> for Point<N, D1> where
    N: Scalar + ClosedAdd,
    DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = Point<N, D1>

The resulting type after applying the + operator.

impl<'b, N, D1: DimName, D2: Dim, SB> AddAssign<&'b Matrix<N, D2, U1, SB>> for Point<N, D1> where
    N: Scalar + ClosedAdd,
    SB: Storage<N, D2>,
    DefaultAllocator: Allocator<N, D1>,
    ShapeConstraint: SameNumberOfRows<D1, D2>, 
[src]

impl<N, D1: DimName, D2: Dim, SB> AddAssign<Matrix<N, D2, U1, SB>> for Point<N, D1> where
    N: Scalar + ClosedAdd,
    SB: Storage<N, D2>,
    DefaultAllocator: Allocator<N, D1>,
    ShapeConstraint: SameNumberOfRows<D1, D2>, 
[src]

impl<N: Scalar + Bounded, D: DimName> Bounded for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: Clone + Scalar, D: Clone + DimName> Clone for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: Debug + Scalar, D: Debug + DimName> Debug for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: Scalar> Deref for Point<N, U1> where
    DefaultAllocator: Allocator<N, U1>, 
[src]

type Target = X<N>

The resulting type after dereferencing.

impl<N: Scalar> Deref for Point<N, U2> where
    DefaultAllocator: Allocator<N, U2>, 
[src]

type Target = XY<N>

The resulting type after dereferencing.

impl<N: Scalar> Deref for Point<N, U3> where
    DefaultAllocator: Allocator<N, U3>, 
[src]

type Target = XYZ<N>

The resulting type after dereferencing.

impl<N: Scalar> Deref for Point<N, U4> where
    DefaultAllocator: Allocator<N, U4>, 
[src]

type Target = XYZW<N>

The resulting type after dereferencing.

impl<N: Scalar> Deref for Point<N, U5> where
    DefaultAllocator: Allocator<N, U5>, 
[src]

type Target = XYZWA<N>

The resulting type after dereferencing.

impl<N: Scalar> Deref for Point<N, U6> where
    DefaultAllocator: Allocator<N, U6>, 
[src]

type Target = XYZWAB<N>

The resulting type after dereferencing.

impl<N: Scalar> DerefMut for Point<N, U1> where
    DefaultAllocator: Allocator<N, U1>, 
[src]

impl<N: Scalar> DerefMut for Point<N, U2> where
    DefaultAllocator: Allocator<N, U2>, 
[src]

impl<N: Scalar> DerefMut for Point<N, U3> where
    DefaultAllocator: Allocator<N, U3>, 
[src]

impl<N: Scalar> DerefMut for Point<N, U4> where
    DefaultAllocator: Allocator<N, U4>, 
[src]

impl<N: Scalar> DerefMut for Point<N, U5> where
    DefaultAllocator: Allocator<N, U5>, 
[src]

impl<N: Scalar> DerefMut for Point<N, U6> where
    DefaultAllocator: Allocator<N, U6>, 
[src]

impl<'a, N: Scalar, D: DimName> Deserialize<'a> for Point<N, D> where
    DefaultAllocator: Allocator<N, D>,
    <DefaultAllocator as Allocator<N, D>>::Buffer: Deserialize<'a>, 
[src]

impl<N: Scalar + Display, D: DimName> Display for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: Scalar, D: DimName> Distribution<Point<N, D>> for Standard where
    DefaultAllocator: Allocator<N, D>,
    Standard: Distribution<N>, 
[src]

impl<N: Scalar + ClosedDiv, D: DimName> Div<N> for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the / operator.

impl<'a, N: Scalar + ClosedDiv, D: DimName> Div<N> for &'a Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the / operator.

impl<N: Scalar + ClosedDiv, D: DimName> DivAssign<N> for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: Scalar + Copy + PrimitiveSimdValue, D: DimName> From<[Point<<N as SimdValue>::Element, D>; 16]> for Point<N, D> where
    N: From<[<N as SimdValue>::Element; 16]>,
    N::Element: Scalar + Copy,
    DefaultAllocator: Allocator<N, D> + Allocator<N::Element, D>,
    <DefaultAllocator as Allocator<N::Element, D>>::Buffer: Copy
[src]

impl<N: Scalar + Copy + PrimitiveSimdValue, D: DimName> From<[Point<<N as SimdValue>::Element, D>; 2]> for Point<N, D> where
    N: From<[<N as SimdValue>::Element; 2]>,
    N::Element: Scalar + Copy,
    DefaultAllocator: Allocator<N, D> + Allocator<N::Element, D>,
    <DefaultAllocator as Allocator<N::Element, D>>::Buffer: Copy
[src]

impl<N: Scalar + Copy + PrimitiveSimdValue, D: DimName> From<[Point<<N as SimdValue>::Element, D>; 4]> for Point<N, D> where
    N: From<[<N as SimdValue>::Element; 4]>,
    N::Element: Scalar + Copy,
    DefaultAllocator: Allocator<N, D> + Allocator<N::Element, D>,
    <DefaultAllocator as Allocator<N::Element, D>>::Buffer: Copy
[src]

impl<N: Scalar + Copy + PrimitiveSimdValue, D: DimName> From<[Point<<N as SimdValue>::Element, D>; 8]> for Point<N, D> where
    N: From<[<N as SimdValue>::Element; 8]>,
    N::Element: Scalar + Copy,
    DefaultAllocator: Allocator<N, D> + Allocator<N::Element, D>,
    <DefaultAllocator as Allocator<N::Element, D>>::Buffer: Copy
[src]

impl<N: Scalar, D: DimName> From<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>> for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: Scalar + Zero + One, D: DimName> From<Point<N, D>> for VectorN<N, DimNameSum<D, U1>> where
    D: DimNameAdd<U1>,
    DefaultAllocator: Allocator<N, D> + Allocator<N, DimNameSum<D, U1>>, 
[src]

impl<N: Scalar + Hash, D: DimName + Hash> Hash for Point<N, D> where
    DefaultAllocator: Allocator<N, D>,
    <DefaultAllocator as Allocator<N, D>>::Buffer: Hash
[src]

impl<N: Scalar, D: DimName> Index<usize> for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = N

The returned type after indexing.

impl<N: Scalar, D: DimName> IndexMut<usize> for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<'b, N, D: DimName> Mul<&'b Point<N, D>> for Rotation<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul,
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D>,
    ShapeConstraint: AreMultipliable<D, D, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, 'b, N, D: DimName> Mul<&'b Point<N, D>> for &'a Rotation<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul,
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D>,
    ShapeConstraint: AreMultipliable<D, D, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, 'b, N, D: DimName> Mul<&'b Point<N, D>> for &'a Translation<N, D> where
    N: Scalar + ClosedAdd,
    DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
    ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'b, N, D: DimName> Mul<&'b Point<N, D>> for Translation<N, D> where
    N: Scalar + ClosedAdd,
    DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
    ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'b, N: SimdRealField, D: DimName, R> Mul<&'b Point<N, D>> for Isometry<N, D, R> where
    N::Element: SimdRealField,
    R: AbstractRotation<N, D>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, 'b, N: SimdRealField, D: DimName, R> Mul<&'b Point<N, D>> for &'a Isometry<N, D, R> where
    N::Element: SimdRealField,
    R: AbstractRotation<N, D>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'b, N: SimdRealField, D: DimName, R> Mul<&'b Point<N, D>> for Similarity<N, D, R> where
    N::Element: SimdRealField,
    R: AbstractRotation<N, D>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, 'b, N: SimdRealField, D: DimName, R> Mul<&'b Point<N, D>> for &'a Similarity<N, D, R> where
    N::Element: SimdRealField,
    R: AbstractRotation<N, D>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'b, N, D: DimNameAdd<U1>, C: TCategory> Mul<&'b Point<N, D>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategory> Mul<&'b Point<N, D>> for &'a Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'b, N, R1: DimName, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Mul<&'b Point<N, D2>> for Matrix<N, R1, C1, SA> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul,
    DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, U1> + Allocator<N, R1, U1>,
    ShapeConstraint: AreMultipliable<R1, C1, D2, U1>, 
[src]

type Output = Point<N, R1>

The resulting type after applying the * operator.

impl<'a, 'b, N, R1: DimName, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Mul<&'b Point<N, D2>> for &'a Matrix<N, R1, C1, SA> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul,
    DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, U1> + Allocator<N, R1, U1>,
    ShapeConstraint: AreMultipliable<R1, C1, D2, U1>, 
[src]

type Output = Point<N, R1>

The resulting type after applying the * operator.

impl<'b, N: SimdRealField> Mul<&'b Point<N, U2>> for UnitComplex<N> where
    N::Element: SimdRealField,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

type Output = Point2<N>

The resulting type after applying the * operator.

impl<'a, 'b, N: SimdRealField> Mul<&'b Point<N, U2>> for &'a UnitComplex<N> where
    N::Element: SimdRealField,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

type Output = Point2<N>

The resulting type after applying the * operator.

impl<'a, 'b, N: SimdRealField> Mul<&'b Point<N, U3>> for &'a UnitQuaternion<N> where
    N::Element: SimdRealField,
    DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>, 
[src]

type Output = Point3<N>

The resulting type after applying the * operator.

impl<'b, N: SimdRealField> Mul<&'b Point<N, U3>> for UnitQuaternion<N> where
    N::Element: SimdRealField,
    DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>, 
[src]

type Output = Point3<N>

The resulting type after applying the * operator.

impl<'b, D: DimName> Mul<&'b Point<f32, D>> for f32 where
    DefaultAllocator: Allocator<f32, D>, 
[src]

type Output = Point<f32, D>

The resulting type after applying the * operator.

impl<'b, D: DimName> Mul<&'b Point<f64, D>> for f64 where
    DefaultAllocator: Allocator<f64, D>, 
[src]

type Output = Point<f64, D>

The resulting type after applying the * operator.

impl<'b, D: DimName> Mul<&'b Point<i16, D>> for i16 where
    DefaultAllocator: Allocator<i16, D>, 
[src]

type Output = Point<i16, D>

The resulting type after applying the * operator.

impl<'b, D: DimName> Mul<&'b Point<i32, D>> for i32 where
    DefaultAllocator: Allocator<i32, D>, 
[src]

type Output = Point<i32, D>

The resulting type after applying the * operator.

impl<'b, D: DimName> Mul<&'b Point<i64, D>> for i64 where
    DefaultAllocator: Allocator<i64, D>, 
[src]

type Output = Point<i64, D>

The resulting type after applying the * operator.

impl<'b, D: DimName> Mul<&'b Point<i8, D>> for i8 where
    DefaultAllocator: Allocator<i8, D>, 
[src]

type Output = Point<i8, D>

The resulting type after applying the * operator.

impl<'b, D: DimName> Mul<&'b Point<isize, D>> for isize where
    DefaultAllocator: Allocator<isize, D>, 
[src]

type Output = Point<isize, D>

The resulting type after applying the * operator.

impl<'b, D: DimName> Mul<&'b Point<u16, D>> for u16 where
    DefaultAllocator: Allocator<u16, D>, 
[src]

type Output = Point<u16, D>

The resulting type after applying the * operator.

impl<'b, D: DimName> Mul<&'b Point<u32, D>> for u32 where
    DefaultAllocator: Allocator<u32, D>, 
[src]

type Output = Point<u32, D>

The resulting type after applying the * operator.

impl<'b, D: DimName> Mul<&'b Point<u64, D>> for u64 where
    DefaultAllocator: Allocator<u64, D>, 
[src]

type Output = Point<u64, D>

The resulting type after applying the * operator.

impl<'b, D: DimName> Mul<&'b Point<u8, D>> for u8 where
    DefaultAllocator: Allocator<u8, D>, 
[src]

type Output = Point<u8, D>

The resulting type after applying the * operator.

impl<'b, D: DimName> Mul<&'b Point<usize, D>> for usize where
    DefaultAllocator: Allocator<usize, D>, 
[src]

type Output = Point<usize, D>

The resulting type after applying the * operator.

impl<N: Scalar + ClosedMul, D: DimName> Mul<N> for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, N: Scalar + ClosedMul, D: DimName> Mul<N> for &'a Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<N, D: DimName> Mul<Point<N, D>> for Rotation<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul,
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D>,
    ShapeConstraint: AreMultipliable<D, D, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, N, D: DimName> Mul<Point<N, D>> for &'a Rotation<N, D> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul,
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
    DefaultAllocator: Allocator<N, D>,
    ShapeConstraint: AreMultipliable<D, D, D, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, N, D: DimName> Mul<Point<N, D>> for &'a Translation<N, D> where
    N: Scalar + ClosedAdd,
    DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
    ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<N, D: DimName> Mul<Point<N, D>> for Translation<N, D> where
    N: Scalar + ClosedAdd,
    DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
    ShapeConstraint: SameNumberOfRows<D, D, Representative = D> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<N: SimdRealField, D: DimName, R> Mul<Point<N, D>> for Isometry<N, D, R> where
    N::Element: SimdRealField,
    R: AbstractRotation<N, D>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, N: SimdRealField, D: DimName, R> Mul<Point<N, D>> for &'a Isometry<N, D, R> where
    N::Element: SimdRealField,
    R: AbstractRotation<N, D>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<N: SimdRealField, D: DimName, R> Mul<Point<N, D>> for Similarity<N, D, R> where
    N::Element: SimdRealField,
    R: AbstractRotation<N, D>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, N: SimdRealField, D: DimName, R> Mul<Point<N, D>> for &'a Similarity<N, D, R> where
    N::Element: SimdRealField,
    R: AbstractRotation<N, D>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<N, D: DimNameAdd<U1>, C: TCategory> Mul<Point<N, D>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, N, D: DimNameAdd<U1>, C: TCategory> Mul<Point<N, D>> for &'a Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>,
    DefaultAllocator: Allocator<N, D, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<N, R1: DimName, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Mul<Point<N, D2>> for Matrix<N, R1, C1, SA> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul,
    DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, U1> + Allocator<N, R1, U1>,
    ShapeConstraint: AreMultipliable<R1, C1, D2, U1>, 
[src]

type Output = Point<N, R1>

The resulting type after applying the * operator.

impl<'a, N, R1: DimName, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Mul<Point<N, D2>> for &'a Matrix<N, R1, C1, SA> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul,
    DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, U1> + Allocator<N, R1, U1>,
    ShapeConstraint: AreMultipliable<R1, C1, D2, U1>, 
[src]

type Output = Point<N, R1>

The resulting type after applying the * operator.

impl<N: SimdRealField> Mul<Point<N, U2>> for UnitComplex<N> where
    N::Element: SimdRealField,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

type Output = Point2<N>

The resulting type after applying the * operator.

impl<'a, N: SimdRealField> Mul<Point<N, U2>> for &'a UnitComplex<N> where
    N::Element: SimdRealField,
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

type Output = Point2<N>

The resulting type after applying the * operator.

impl<'a, N: SimdRealField> Mul<Point<N, U3>> for &'a UnitQuaternion<N> where
    N::Element: SimdRealField,
    DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>, 
[src]

type Output = Point3<N>

The resulting type after applying the * operator.

impl<N: SimdRealField> Mul<Point<N, U3>> for UnitQuaternion<N> where
    N::Element: SimdRealField,
    DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>, 
[src]

type Output = Point3<N>

The resulting type after applying the * operator.

impl<D: DimName> Mul<Point<f32, D>> for f32 where
    DefaultAllocator: Allocator<f32, D>, 
[src]

type Output = Point<f32, D>

The resulting type after applying the * operator.

impl<D: DimName> Mul<Point<f64, D>> for f64 where
    DefaultAllocator: Allocator<f64, D>, 
[src]

type Output = Point<f64, D>

The resulting type after applying the * operator.

impl<D: DimName> Mul<Point<i16, D>> for i16 where
    DefaultAllocator: Allocator<i16, D>, 
[src]

type Output = Point<i16, D>

The resulting type after applying the * operator.

impl<D: DimName> Mul<Point<i32, D>> for i32 where
    DefaultAllocator: Allocator<i32, D>, 
[src]

type Output = Point<i32, D>

The resulting type after applying the * operator.

impl<D: DimName> Mul<Point<i64, D>> for i64 where
    DefaultAllocator: Allocator<i64, D>, 
[src]

type Output = Point<i64, D>

The resulting type after applying the * operator.

impl<D: DimName> Mul<Point<i8, D>> for i8 where
    DefaultAllocator: Allocator<i8, D>, 
[src]

type Output = Point<i8, D>

The resulting type after applying the * operator.

impl<D: DimName> Mul<Point<isize, D>> for isize where
    DefaultAllocator: Allocator<isize, D>, 
[src]

type Output = Point<isize, D>

The resulting type after applying the * operator.

impl<D: DimName> Mul<Point<u16, D>> for u16 where
    DefaultAllocator: Allocator<u16, D>, 
[src]

type Output = Point<u16, D>

The resulting type after applying the * operator.

impl<D: DimName> Mul<Point<u32, D>> for u32 where
    DefaultAllocator: Allocator<u32, D>, 
[src]

type Output = Point<u32, D>

The resulting type after applying the * operator.

impl<D: DimName> Mul<Point<u64, D>> for u64 where
    DefaultAllocator: Allocator<u64, D>, 
[src]

type Output = Point<u64, D>

The resulting type after applying the * operator.

impl<D: DimName> Mul<Point<u8, D>> for u8 where
    DefaultAllocator: Allocator<u8, D>, 
[src]

type Output = Point<u8, D>

The resulting type after applying the * operator.

impl<D: DimName> Mul<Point<usize, D>> for usize where
    DefaultAllocator: Allocator<usize, D>, 
[src]

type Output = Point<usize, D>

The resulting type after applying the * operator.

impl<N: Scalar + ClosedMul, D: DimName> MulAssign<N> for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: Scalar + ClosedNeg, D: DimName> Neg for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Self

The resulting type after applying the - operator.

impl<'a, N: Scalar + ClosedNeg, D: DimName> Neg for &'a Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the - operator.

impl<N: Scalar, D: DimName> PartialEq<Point<N, D>> for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: Scalar + PartialOrd, D: DimName> PartialOrd<Point<N, D>> for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: Scalar + RelativeEq, D: DimName> RelativeEq<Point<N, D>> for Point<N, D> where
    DefaultAllocator: Allocator<N, D>,
    N::Epsilon: Copy
[src]

impl<N: Scalar, D: DimName> Serialize for Point<N, D> where
    DefaultAllocator: Allocator<N, D>,
    <DefaultAllocator as Allocator<N, D>>::Buffer: Serialize
[src]

impl<N: Scalar + SimdValue, D: DimName> SimdValue for Point<N, D> where
    N::Element: Scalar,
    DefaultAllocator: Allocator<N, D> + Allocator<N::Element, D>, 
[src]

type Element = Point<N::Element, D>

The type of the elements of each lane of this SIMD value.

type SimdBool = N::SimdBool

Type of the result of comparing two SIMD values like self.

impl<'a, 'b, N, D1: DimName, D2: Dim, SB: Storage<N, D2>> Sub<&'b Matrix<N, D2, U1, SB>> for &'a Point<N, D1> where
    N: Scalar + ClosedSub,
    DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = Point<N, D1>

The resulting type after applying the - operator.

impl<'b, N, D1: DimName, D2: Dim, SB: Storage<N, D2>> Sub<&'b Matrix<N, D2, U1, SB>> for Point<N, D1> where
    N: Scalar + ClosedSub,
    DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = Point<N, D1>

The resulting type after applying the - operator.

impl<'a, 'b, N, D: DimName> Sub<&'b Point<N, D>> for &'a Point<N, D> where
    N: Scalar + ClosedSub,
    DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
    ShapeConstraint: SameNumberOfRows<D, D> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = VectorSum<N, D, D>

The resulting type after applying the - operator.

impl<'b, N, D: DimName> Sub<&'b Point<N, D>> for Point<N, D> where
    N: Scalar + ClosedSub,
    DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
    ShapeConstraint: SameNumberOfRows<D, D> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = VectorSum<N, D, D>

The resulting type after applying the - operator.

impl<'a, N, D1: DimName, D2: Dim, SB: Storage<N, D2>> Sub<Matrix<N, D2, U1, SB>> for &'a Point<N, D1> where
    N: Scalar + ClosedSub,
    DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = Point<N, D1>

The resulting type after applying the - operator.

impl<N, D1: DimName, D2: Dim, SB: Storage<N, D2>> Sub<Matrix<N, D2, U1, SB>> for Point<N, D1> where
    N: Scalar + ClosedSub,
    DefaultAllocator: Allocator<N, D1, U1> + Allocator<N, D2, U1> + SameShapeAllocator<N, D1, U1, D2, U1>,
    ShapeConstraint: SameNumberOfRows<D1, D2, Representative = D1> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = Point<N, D1>

The resulting type after applying the - operator.

impl<'a, N, D: DimName> Sub<Point<N, D>> for &'a Point<N, D> where
    N: Scalar + ClosedSub,
    DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
    ShapeConstraint: SameNumberOfRows<D, D> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = VectorSum<N, D, D>

The resulting type after applying the - operator.

impl<N, D: DimName> Sub<Point<N, D>> for Point<N, D> where
    N: Scalar + ClosedSub,
    DefaultAllocator: Allocator<N, D, U1> + SameShapeAllocator<N, D, U1, D, U1>,
    ShapeConstraint: SameNumberOfRows<D, D> + SameNumberOfColumns<U1, U1>, 
[src]

type Output = VectorSum<N, D, D>

The resulting type after applying the - operator.

impl<'b, N, D1: DimName, D2: Dim, SB> SubAssign<&'b Matrix<N, D2, U1, SB>> for Point<N, D1> where
    N: Scalar + ClosedSub,
    SB: Storage<N, D2>,
    DefaultAllocator: Allocator<N, D1>,
    ShapeConstraint: SameNumberOfRows<D1, D2>, 
[src]

impl<N, D1: DimName, D2: Dim, SB> SubAssign<Matrix<N, D2, U1, SB>> for Point<N, D1> where
    N: Scalar + ClosedSub,
    SB: Storage<N, D2>,
    DefaultAllocator: Allocator<N, D1>,
    ShapeConstraint: SameNumberOfRows<D1, D2>, 
[src]

impl<N1, N2, D> SubsetOf<Matrix<N2, <D as DimNameAdd<U1>>::Output, U1, <DefaultAllocator as Allocator<N2, <D as DimNameAdd<U1>>::Output, U1>>::Buffer>> for Point<N1, D> where
    D: DimNameAdd<U1>,
    N1: Scalar,
    N2: Scalar + Zero + One + ClosedDiv + SupersetOf<N1>,
    DefaultAllocator: Allocator<N1, D> + Allocator<N1, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>> + Allocator<N2, D>, 
[src]

impl<N1, N2, D> SubsetOf<Point<N2, D>> for Point<N1, D> where
    D: DimName,
    N1: Scalar,
    N2: Scalar + SupersetOf<N1>,
    DefaultAllocator: Allocator<N2, D> + Allocator<N1, D>, 
[src]

impl<N: Scalar + UlpsEq, D: DimName> UlpsEq<Point<N, D>> for Point<N, D> where
    DefaultAllocator: Allocator<N, D>,
    N::Epsilon: Copy
[src]

impl<N: Scalar + Copy, D: DimName> Copy for Point<N, D> where
    DefaultAllocator: Allocator<N, D>,
    <DefaultAllocator as Allocator<N, D>>::Buffer: Copy
[src]

impl<N: Scalar + Eq, D: DimName> Eq for Point<N, D> where
    DefaultAllocator: Allocator<N, D>, 
[src]

Auto Trait Implementations

impl<N, D> !RefUnwindSafe for Point<N, D>

impl<N, D> !Send for Point<N, D>

impl<N, D> !Sync for Point<N, D>

impl<N, D> !Unpin for Point<N, D>

impl<N, D> !UnwindSafe for Point<N, D>

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> Same<T> for T[src]

type Output = T

Should always be Self

impl<T> SimdPartialOrd for T where
    T: SimdValue<Element = T, SimdBool = bool> + PartialOrd<T>, 
[src]

impl<SS, SP> SupersetOf<SS> for SP where
    SS: SubsetOf<SP>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T> ToString for T where
    T: Display + ?Sized
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<V, T> VZip<V> for T where
    V: MultiLane<T>, 
[src]

impl<T, Right> ClosedAdd<Right> for T where
    T: Add<Right, Output = T> + AddAssign<Right>, 
[src]

impl<T, Right> ClosedDiv<Right> for T where
    T: Div<Right, Output = T> + DivAssign<Right>, 
[src]

impl<T, Right> ClosedMul<Right> for T where
    T: Mul<Right, Output = T> + MulAssign<Right>, 
[src]

impl<T> ClosedNeg for T where
    T: Neg<Output = T>, 
[src]

impl<T, Right> ClosedSub<Right> for T where
    T: Sub<Right, Output = T> + SubAssign<Right>, 
[src]