Struct nalgebra::geometry::Rotation [−][src]
#[repr(C)]pub struct Rotation<N: Scalar, D: DimName> where
DefaultAllocator: Allocator<N, D, D>, { /* fields omitted */ }
A rotation matrix.
This is also known as an element of a Special Orthogonal (SO) group.
The Rotation
type can either represent a 2D or 3D rotation, represented as a matrix.
For a rotation based on quaternions, see UnitQuaternion
instead.
Note that instead of using the Rotation
type in your code directly, you should use one
of its aliases: Rotation2
, or Rotation3
. Though
keep in mind that all the documentation of all the methods of these aliases will also appears on
this page.
Construction
- Identity
identity
- From a 2D rotation angle
new
… - From an existing 2D matrix or rotations
from_matrix
,rotation_between
,powf
… - From a 3D axis and/or angles
new
,from_euler_angles
,from_axis_angle
… - From a 3D eye position and target point
look_at
,look_at_lh
,rotation_between
… - From an existing 3D matrix or rotations
from_matrix
,rotation_between
,powf
…
Transformation and composition
Note that transforming vectors and points can be done by multiplication, e.g., rotation * point
.
Composing an rotation with another transformation can also be done by multiplication or division.
- 3D axis and angle extraction
angle
,euler_angles
,scaled_axis
,angle_to
… - 2D angle extraction
angle
,angle_to
… - Transformation of a vector or a point
transform_vector
,inverse_transform_point
… - Transposition and inversion
transpose
,inverse
… - Interpolation
slerp
…
Conversion
Implementations
impl<N: Scalar, D: DimName> Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D>,
[src]
impl<N: Scalar, D: DimName> Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D>,
[src]pub fn from_matrix_unchecked(matrix: MatrixN<N, D>) -> Self
[src]
Creates a new rotation from the given square matrix.
The matrix squareness is checked but not its orthonormality.
Example
let mat = Matrix3::new(0.8660254, -0.5, 0.0, 0.5, 0.8660254, 0.0, 0.0, 0.0, 1.0); let rot = Rotation3::from_matrix_unchecked(mat); assert_eq!(*rot.matrix(), mat); let mat = Matrix2::new(0.8660254, -0.5, 0.5, 0.8660254); let rot = Rotation2::from_matrix_unchecked(mat); assert_eq!(*rot.matrix(), mat);
impl<N: Scalar, D: DimName> Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D>,
[src]
impl<N: Scalar, D: DimName> Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D>,
[src]pub fn matrix(&self) -> &MatrixN<N, D>
[src]
A reference to the underlying matrix representation of this rotation.
Example
let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6); let expected = Matrix3::new(0.8660254, -0.5, 0.0, 0.5, 0.8660254, 0.0, 0.0, 0.0, 1.0); assert_eq!(*rot.matrix(), expected); let rot = Rotation2::new(f32::consts::FRAC_PI_6); let expected = Matrix2::new(0.8660254, -0.5, 0.5, 0.8660254); assert_eq!(*rot.matrix(), expected);
pub unsafe fn matrix_mut(&mut self) -> &mut MatrixN<N, D>
[src]
Use .matrix_mut_unchecked()
instead.
A mutable reference to the underlying matrix representation of this rotation.
pub fn matrix_mut_unchecked(&mut self) -> &mut MatrixN<N, D>
[src]
A mutable reference to the underlying matrix representation of this rotation.
This is suffixed by “_unchecked” because this allows the user to replace the matrix by another one that is non-square, non-inversible, or non-orthonormal. If one of those properties is broken, subsequent method calls may be UB.
pub fn into_inner(self) -> MatrixN<N, D>
[src]
Unwraps the underlying matrix.
Example
let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6); let mat = rot.into_inner(); let expected = Matrix3::new(0.8660254, -0.5, 0.0, 0.5, 0.8660254, 0.0, 0.0, 0.0, 1.0); assert_eq!(mat, expected); let rot = Rotation2::new(f32::consts::FRAC_PI_6); let mat = rot.into_inner(); let expected = Matrix2::new(0.8660254, -0.5, 0.5, 0.8660254); assert_eq!(mat, expected);
pub fn unwrap(self) -> MatrixN<N, D>
[src]
use .into_inner()
instead
Unwraps the underlying matrix. Deprecated: Use Rotation::into_inner instead.
pub fn to_homogeneous(&self) -> MatrixN<N, DimNameSum<D, U1>> where
N: Zero + One,
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
[src]
N: Zero + One,
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
Converts this rotation into its equivalent homogeneous transformation matrix.
This is the same as self.into()
.
Example
let rot = Rotation3::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6); let expected = Matrix4::new(0.8660254, -0.5, 0.0, 0.0, 0.5, 0.8660254, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0); assert_eq!(rot.to_homogeneous(), expected); let rot = Rotation2::new(f32::consts::FRAC_PI_6); let expected = Matrix3::new(0.8660254, -0.5, 0.0, 0.5, 0.8660254, 0.0, 0.0, 0.0, 1.0); assert_eq!(rot.to_homogeneous(), expected);
impl<N: Scalar, D: DimName> Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D>,
[src]
impl<N: Scalar, D: DimName> Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D>,
[src]#[must_use = "Did you mean to use transpose_mut()?"]pub fn transpose(&self) -> Self
[src]
Transposes self
.
Same as .inverse()
because the inverse of a rotation matrix is its transform.
Example
let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0)); let tr_rot = rot.transpose(); assert_relative_eq!(rot * tr_rot, Rotation3::identity(), epsilon = 1.0e-6); assert_relative_eq!(tr_rot * rot, Rotation3::identity(), epsilon = 1.0e-6); let rot = Rotation2::new(1.2); let tr_rot = rot.transpose(); assert_relative_eq!(rot * tr_rot, Rotation2::identity(), epsilon = 1.0e-6); assert_relative_eq!(tr_rot * rot, Rotation2::identity(), epsilon = 1.0e-6);
#[must_use = "Did you mean to use inverse_mut()?"]pub fn inverse(&self) -> Self
[src]
Inverts self
.
Same as .transpose()
because the inverse of a rotation matrix is its transform.
Example
let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0)); let inv = rot.inverse(); assert_relative_eq!(rot * inv, Rotation3::identity(), epsilon = 1.0e-6); assert_relative_eq!(inv * rot, Rotation3::identity(), epsilon = 1.0e-6); let rot = Rotation2::new(1.2); let inv = rot.inverse(); assert_relative_eq!(rot * inv, Rotation2::identity(), epsilon = 1.0e-6); assert_relative_eq!(inv * rot, Rotation2::identity(), epsilon = 1.0e-6);
pub fn transpose_mut(&mut self)
[src]
Transposes self
in-place.
Same as .inverse_mut()
because the inverse of a rotation matrix is its transform.
Example
let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0)); let mut tr_rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0)); tr_rot.transpose_mut(); assert_relative_eq!(rot * tr_rot, Rotation3::identity(), epsilon = 1.0e-6); assert_relative_eq!(tr_rot * rot, Rotation3::identity(), epsilon = 1.0e-6); let rot = Rotation2::new(1.2); let mut tr_rot = Rotation2::new(1.2); tr_rot.transpose_mut(); assert_relative_eq!(rot * tr_rot, Rotation2::identity(), epsilon = 1.0e-6); assert_relative_eq!(tr_rot * rot, Rotation2::identity(), epsilon = 1.0e-6);
pub fn inverse_mut(&mut self)
[src]
Inverts self
in-place.
Same as .transpose_mut()
because the inverse of a rotation matrix is its transform.
Example
let rot = Rotation3::new(Vector3::new(1.0, 2.0, 3.0)); let mut inv = Rotation3::new(Vector3::new(1.0, 2.0, 3.0)); inv.inverse_mut(); assert_relative_eq!(rot * inv, Rotation3::identity(), epsilon = 1.0e-6); assert_relative_eq!(inv * rot, Rotation3::identity(), epsilon = 1.0e-6); let rot = Rotation2::new(1.2); let mut inv = Rotation2::new(1.2); inv.inverse_mut(); assert_relative_eq!(rot * inv, Rotation2::identity(), epsilon = 1.0e-6); assert_relative_eq!(inv * rot, Rotation2::identity(), epsilon = 1.0e-6);
impl<N: SimdRealField, D: DimName> Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
[src]
impl<N: SimdRealField, D: DimName> Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>,
[src]pub fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
Rotate the given point.
This is the same as the multiplication self * pt
.
Example
let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2); let transformed_point = rot.transform_point(&Point3::new(1.0, 2.0, 3.0)); assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
pub fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
Rotate the given vector.
This is the same as the multiplication self * v
.
Example
let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2); let transformed_vector = rot.transform_vector(&Vector3::new(1.0, 2.0, 3.0)); assert_relative_eq!(transformed_vector, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
pub fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D>
[src]
Rotate the given point by the inverse of this rotation. This may be cheaper than inverting the rotation and then transforming the given point.
Example
let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2); let transformed_point = rot.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0)); assert_relative_eq!(transformed_point, Point3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
pub fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>
[src]
Rotate the given vector by the inverse of this rotation. This may be cheaper than inverting the rotation and then transforming the given vector.
Example
let rot = Rotation3::new(Vector3::y() * f32::consts::FRAC_PI_2); let transformed_vector = rot.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0)); assert_relative_eq!(transformed_vector, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
pub fn inverse_transform_unit_vector(
&self,
v: &Unit<VectorN<N, D>>
) -> Unit<VectorN<N, D>>
[src]
&self,
v: &Unit<VectorN<N, D>>
) -> Unit<VectorN<N, D>>
Rotate the given vector by the inverse of this rotation. This may be cheaper than inverting the rotation and then transforming the given vector.
Example
let rot = Rotation3::new(Vector3::z() * f32::consts::FRAC_PI_2); let transformed_vector = rot.inverse_transform_unit_vector(&Vector3::x_axis()); assert_relative_eq!(transformed_vector, -Vector3::y_axis(), epsilon = 1.0e-6);
impl<N, D: DimName> Rotation<N, D> where
N: Scalar + Zero + One,
DefaultAllocator: Allocator<N, D, D>,
[src]
impl<N, D: DimName> Rotation<N, D> where
N: Scalar + Zero + One,
DefaultAllocator: Allocator<N, D, D>,
[src]impl<N: SimdRealField> Rotation<N, U2>
[src]
impl<N: SimdRealField> Rotation<N, U2>
[src]pub fn slerp(&self, other: &Self, t: N) -> Self where
N::Element: SimdRealField,
[src]
N::Element: SimdRealField,
Spherical linear interpolation between two rotation matrices.
Examples:
let rot1 = Rotation2::new(std::f32::consts::FRAC_PI_4); let rot2 = Rotation2::new(-std::f32::consts::PI); let rot = rot1.slerp(&rot2, 1.0 / 3.0); assert_relative_eq!(rot.angle(), std::f32::consts::FRAC_PI_2);
impl<N: SimdRealField> Rotation<N, U3>
[src]
impl<N: SimdRealField> Rotation<N, U3>
[src]pub fn slerp(&self, other: &Self, t: N) -> Self where
N: RealField,
[src]
N: RealField,
Spherical linear interpolation between two rotation matrices.
Panics if the angle between both rotations is 180 degrees (in which case the interpolation
is not well-defined). Use .try_slerp
instead to avoid the panic.
Examples:
let q1 = Rotation3::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0); let q2 = Rotation3::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0); let q = q1.slerp(&q2, 1.0 / 3.0); assert_eq!(q.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
pub fn try_slerp(&self, other: &Self, t: N, epsilon: N) -> Option<Self> where
N: RealField,
[src]
N: RealField,
Computes the spherical linear interpolation between two rotation matrices or returns None
if both rotations are approximately 180 degrees apart (in which case the interpolation is
not well-defined).
Arguments
self
: the first rotation to interpolate from.other
: the second rotation to interpolate toward.t
: the interpolation parameter. Should be between 0 and 1.epsilon
: the value below which the sinus of the angle separating both rotations must be to returnNone
.
impl<N: SimdRealField> Rotation<N, U2>
[src]
impl<N: SimdRealField> Rotation<N, U2>
[src]pub fn new(angle: N) -> Self
[src]
Builds a 2 dimensional rotation matrix from an angle in radian.
Example
let rot = Rotation2::new(f32::consts::FRAC_PI_2); assert_relative_eq!(rot * Point2::new(3.0, 4.0), Point2::new(-4.0, 3.0));
pub fn from_scaled_axis<SB: Storage<N, U1>>(
axisangle: Vector<N, U1, SB>
) -> Self
[src]
axisangle: Vector<N, U1, SB>
) -> Self
Builds a 2 dimensional rotation matrix from an angle in radian wrapped in a 1-dimensional vector.
This is generally used in the context of generic programming. Using
the ::new(angle)
method instead is more common.
impl<N: SimdRealField> Rotation<N, U2>
[src]
impl<N: SimdRealField> Rotation<N, U2>
[src]pub fn from_matrix(m: &Matrix2<N>) -> Self where
N: RealField,
[src]
N: RealField,
Builds a rotation matrix by extracting the rotation part of the given transformation m
.
This is an iterative method. See .from_matrix_eps
to provide mover
convergence parameters and starting solution.
This implements “A Robust Method to Extract the Rotational Part of Deformations” by Müller et al.
pub fn from_matrix_eps(
m: &Matrix2<N>,
eps: N,
max_iter: usize,
guess: Self
) -> Self where
N: RealField,
[src]
m: &Matrix2<N>,
eps: N,
max_iter: usize,
guess: Self
) -> Self where
N: RealField,
Builds a rotation matrix by extracting the rotation part of the given transformation m
.
This implements “A Robust Method to Extract the Rotational Part of Deformations” by Müller et al.
Parameters
m
: the matrix from which the rotational part is to be extracted.eps
: the angular errors tolerated between the current rotation and the optimal one.max_iter
: the maximum number of iterations. Loops indefinitely until convergence if set to0
.guess
: an estimate of the solution. Convergence will be significantly faster if an initial solution close to the actual solution is provided. Can be set toRotation2::identity()
if no other guesses come to mind.
pub fn rotation_between<SB, SC>(
a: &Vector<N, U2, SB>,
b: &Vector<N, U2, SC>
) -> Self where
N: RealField,
SB: Storage<N, U2>,
SC: Storage<N, U2>,
[src]
a: &Vector<N, U2, SB>,
b: &Vector<N, U2, SC>
) -> Self where
N: RealField,
SB: Storage<N, U2>,
SC: Storage<N, U2>,
The rotation matrix required to align a
and b
but with its angle.
This is the rotation R
such that (R * a).angle(b) == 0 && (R * a).dot(b).is_positive()
.
Example
let a = Vector2::new(1.0, 2.0); let b = Vector2::new(2.0, 1.0); let rot = Rotation2::rotation_between(&a, &b); assert_relative_eq!(rot * a, b); assert_relative_eq!(rot.inverse() * b, a);
pub fn scaled_rotation_between<SB, SC>(
a: &Vector<N, U2, SB>,
b: &Vector<N, U2, SC>,
s: N
) -> Self where
N: RealField,
SB: Storage<N, U2>,
SC: Storage<N, U2>,
[src]
a: &Vector<N, U2, SB>,
b: &Vector<N, U2, SC>,
s: N
) -> Self where
N: RealField,
SB: Storage<N, U2>,
SC: Storage<N, U2>,
The smallest rotation needed to make a
and b
collinear and point toward the same
direction, raised to the power s
.
Example
let a = Vector2::new(1.0, 2.0); let b = Vector2::new(2.0, 1.0); let rot2 = Rotation2::scaled_rotation_between(&a, &b, 0.2); let rot5 = Rotation2::scaled_rotation_between(&a, &b, 0.5); assert_relative_eq!(rot2 * rot2 * rot2 * rot2 * rot2 * a, b, epsilon = 1.0e-6); assert_relative_eq!(rot5 * rot5 * a, b, epsilon = 1.0e-6);
pub fn rotation_to(&self, other: &Self) -> Self
[src]
The rotation matrix needed to make self
and other
coincide.
The result is such that: self.rotation_to(other) * self == other
.
Example
let rot1 = Rotation2::new(0.1); let rot2 = Rotation2::new(1.7); let rot_to = rot1.rotation_to(&rot2); assert_relative_eq!(rot_to * rot1, rot2); assert_relative_eq!(rot_to.inverse() * rot2, rot1);
pub fn renormalize(&mut self) where
N: RealField,
[src]
N: RealField,
Ensure this rotation is an orthonormal rotation matrix. This is useful when repeated computations might cause the matrix from progressively not being orthonormal anymore.
pub fn powf(&self, n: N) -> Self
[src]
Raise the quaternion to a given floating power, i.e., returns the rotation with the angle
of self
multiplied by n
.
Example
let rot = Rotation2::new(0.78); let pow = rot.powf(2.0); assert_relative_eq!(pow.angle(), 2.0 * 0.78);
impl<N: SimdRealField> Rotation<N, U2>
[src]
impl<N: SimdRealField> Rotation<N, U2>
[src]pub fn angle(&self) -> N
[src]
pub fn angle_to(&self, other: &Self) -> N
[src]
The rotation angle needed to make self
and other
coincide.
Example
let rot1 = Rotation2::new(0.1); let rot2 = Rotation2::new(1.7); assert_relative_eq!(rot1.angle_to(&rot2), 1.6);
pub fn scaled_axis(&self) -> VectorN<N, U1>
[src]
The rotation angle returned as a 1-dimensional vector.
This is generally used in the context of generic programming. Using
the .angle()
method instead is more common.
impl<N: SimdRealField> Rotation<N, U3> where
N::Element: SimdRealField,
[src]
impl<N: SimdRealField> Rotation<N, U3> where
N::Element: SimdRealField,
[src]pub fn new<SB: Storage<N, U3>>(axisangle: Vector<N, U3, SB>) -> Self
[src]
Builds a 3 dimensional rotation matrix from an axis and an angle.
Arguments
axisangle
- A vector representing the rotation. Its magnitude is the amount of rotation in radian. Its direction is the axis of rotation.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; // Point and vector being transformed in the tests. let pt = Point3::new(4.0, 5.0, 6.0); let vec = Vector3::new(4.0, 5.0, 6.0); let rot = Rotation3::new(axisangle); assert_relative_eq!(rot * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); assert_relative_eq!(rot * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); // A zero vector yields an identity. assert_eq!(Rotation3::new(Vector3::<f32>::zeros()), Rotation3::identity());
pub fn from_scaled_axis<SB: Storage<N, U3>>(
axisangle: Vector<N, U3, SB>
) -> Self
[src]
axisangle: Vector<N, U3, SB>
) -> Self
Builds a 3D rotation matrix from an axis scaled by the rotation angle.
This is the same as Self::new(axisangle)
.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; // Point and vector being transformed in the tests. let pt = Point3::new(4.0, 5.0, 6.0); let vec = Vector3::new(4.0, 5.0, 6.0); let rot = Rotation3::new(axisangle); assert_relative_eq!(rot * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); assert_relative_eq!(rot * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); // A zero vector yields an identity. assert_eq!(Rotation3::from_scaled_axis(Vector3::<f32>::zeros()), Rotation3::identity());
pub fn from_axis_angle<SB>(axis: &Unit<Vector<N, U3, SB>>, angle: N) -> Self where
SB: Storage<N, U3>,
[src]
SB: Storage<N, U3>,
Builds a 3D rotation matrix from an axis and a rotation angle.
Example
let axis = Vector3::y_axis(); let angle = f32::consts::FRAC_PI_2; // Point and vector being transformed in the tests. let pt = Point3::new(4.0, 5.0, 6.0); let vec = Vector3::new(4.0, 5.0, 6.0); let rot = Rotation3::from_axis_angle(&axis, angle); assert_eq!(rot.axis().unwrap(), axis); assert_eq!(rot.angle(), angle); assert_relative_eq!(rot * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); assert_relative_eq!(rot * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); // A zero vector yields an identity. assert_eq!(Rotation3::from_scaled_axis(Vector3::<f32>::zeros()), Rotation3::identity());
pub fn from_euler_angles(roll: N, pitch: N, yaw: N) -> Self
[src]
Creates a new rotation from Euler angles.
The primitive rotations are applied in order: 1 roll − 2 pitch − 3 yaw.
Example
let rot = Rotation3::from_euler_angles(0.1, 0.2, 0.3); let euler = rot.euler_angles(); assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6); assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6); assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
impl<N: SimdRealField> Rotation<N, U3> where
N::Element: SimdRealField,
[src]
impl<N: SimdRealField> Rotation<N, U3> where
N::Element: SimdRealField,
[src]pub fn face_towards<SB, SC>(
dir: &Vector<N, U3, SB>,
up: &Vector<N, U3, SC>
) -> Self where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
[src]
dir: &Vector<N, U3, SB>,
up: &Vector<N, U3, SC>
) -> Self where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
Creates a rotation that corresponds to the local frame of an observer standing at the
origin and looking toward dir
.
It maps the z
axis to the direction dir
.
Arguments
- dir - The look direction, that is, direction the matrix
z
axis will be aligned with. - up - The vertical direction. The only requirement of this parameter is to not be
collinear to
dir
. Non-collinearity is not checked.
Example
let dir = Vector3::new(1.0, 2.0, 3.0); let up = Vector3::y(); let rot = Rotation3::face_towards(&dir, &up); assert_relative_eq!(rot * Vector3::z(), dir.normalize());
pub fn new_observer_frames<SB, SC>(
dir: &Vector<N, U3, SB>,
up: &Vector<N, U3, SC>
) -> Self where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
[src]
dir: &Vector<N, U3, SB>,
up: &Vector<N, U3, SC>
) -> Self where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
renamed to face_towards
Deprecated: Use [Rotation3::face_towards] instead.
pub fn look_at_rh<SB, SC>(
dir: &Vector<N, U3, SB>,
up: &Vector<N, U3, SC>
) -> Self where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
[src]
dir: &Vector<N, U3, SB>,
up: &Vector<N, U3, SC>
) -> Self where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
Builds a right-handed look-at view matrix without translation.
It maps the view direction dir
to the negative z
axis.
This conforms to the common notion of right handed look-at matrix from the computer
graphics community.
Arguments
- dir - The direction toward which the camera looks.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
dir
.
Example
let dir = Vector3::new(1.0, 2.0, 3.0); let up = Vector3::y(); let rot = Rotation3::look_at_rh(&dir, &up); assert_relative_eq!(rot * dir.normalize(), -Vector3::z());
pub fn look_at_lh<SB, SC>(
dir: &Vector<N, U3, SB>,
up: &Vector<N, U3, SC>
) -> Self where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
[src]
dir: &Vector<N, U3, SB>,
up: &Vector<N, U3, SC>
) -> Self where
SB: Storage<N, U3>,
SC: Storage<N, U3>,
Builds a left-handed look-at view matrix without translation.
It maps the view direction dir
to the positive z
axis.
This conforms to the common notion of left handed look-at matrix from the computer
graphics community.
Arguments
- dir - The direction toward which the camera looks.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
dir
.
Example
let dir = Vector3::new(1.0, 2.0, 3.0); let up = Vector3::y(); let rot = Rotation3::look_at_lh(&dir, &up); assert_relative_eq!(rot * dir.normalize(), Vector3::z());
impl<N: SimdRealField> Rotation<N, U3> where
N::Element: SimdRealField,
[src]
impl<N: SimdRealField> Rotation<N, U3> where
N::Element: SimdRealField,
[src]pub fn rotation_between<SB, SC>(
a: &Vector<N, U3, SB>,
b: &Vector<N, U3, SC>
) -> Option<Self> where
N: RealField,
SB: Storage<N, U3>,
SC: Storage<N, U3>,
[src]
a: &Vector<N, U3, SB>,
b: &Vector<N, U3, SC>
) -> Option<Self> where
N: RealField,
SB: Storage<N, U3>,
SC: Storage<N, U3>,
The rotation matrix required to align a
and b
but with its angle.
This is the rotation R
such that (R * a).angle(b) == 0 && (R * a).dot(b).is_positive()
.
Example
let a = Vector3::new(1.0, 2.0, 3.0); let b = Vector3::new(3.0, 1.0, 2.0); let rot = Rotation3::rotation_between(&a, &b).unwrap(); assert_relative_eq!(rot * a, b, epsilon = 1.0e-6); assert_relative_eq!(rot.inverse() * b, a, epsilon = 1.0e-6);
pub fn scaled_rotation_between<SB, SC>(
a: &Vector<N, U3, SB>,
b: &Vector<N, U3, SC>,
n: N
) -> Option<Self> where
N: RealField,
SB: Storage<N, U3>,
SC: Storage<N, U3>,
[src]
a: &Vector<N, U3, SB>,
b: &Vector<N, U3, SC>,
n: N
) -> Option<Self> where
N: RealField,
SB: Storage<N, U3>,
SC: Storage<N, U3>,
The smallest rotation needed to make a
and b
collinear and point toward the same
direction, raised to the power s
.
Example
let a = Vector3::new(1.0, 2.0, 3.0); let b = Vector3::new(3.0, 1.0, 2.0); let rot2 = Rotation3::scaled_rotation_between(&a, &b, 0.2).unwrap(); let rot5 = Rotation3::scaled_rotation_between(&a, &b, 0.5).unwrap(); assert_relative_eq!(rot2 * rot2 * rot2 * rot2 * rot2 * a, b, epsilon = 1.0e-6); assert_relative_eq!(rot5 * rot5 * a, b, epsilon = 1.0e-6);
pub fn rotation_to(&self, other: &Self) -> Self
[src]
The rotation matrix needed to make self
and other
coincide.
The result is such that: self.rotation_to(other) * self == other
.
Example
let rot1 = Rotation3::from_axis_angle(&Vector3::y_axis(), 1.0); let rot2 = Rotation3::from_axis_angle(&Vector3::x_axis(), 0.1); let rot_to = rot1.rotation_to(&rot2); assert_relative_eq!(rot_to * rot1, rot2, epsilon = 1.0e-6);
pub fn powf(&self, n: N) -> Self where
N: RealField,
[src]
N: RealField,
Raise the quaternion to a given floating power, i.e., returns the rotation with the same
axis as self
and an angle equal to self.angle()
multiplied by n
.
Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); let angle = 1.2; let rot = Rotation3::from_axis_angle(&axis, angle); let pow = rot.powf(2.0); assert_relative_eq!(pow.axis().unwrap(), axis, epsilon = 1.0e-6); assert_eq!(pow.angle(), 2.4);
pub fn from_matrix(m: &Matrix3<N>) -> Self where
N: RealField,
[src]
N: RealField,
Builds a rotation matrix by extracting the rotation part of the given transformation m
.
This is an iterative method. See .from_matrix_eps
to provide mover
convergence parameters and starting solution.
This implements “A Robust Method to Extract the Rotational Part of Deformations” by Müller et al.
pub fn from_matrix_eps(
m: &Matrix3<N>,
eps: N,
max_iter: usize,
guess: Self
) -> Self where
N: RealField,
[src]
m: &Matrix3<N>,
eps: N,
max_iter: usize,
guess: Self
) -> Self where
N: RealField,
Builds a rotation matrix by extracting the rotation part of the given transformation m
.
This implements “A Robust Method to Extract the Rotational Part of Deformations” by Müller et al.
Parameters
m
: the matrix from which the rotational part is to be extracted.eps
: the angular errors tolerated between the current rotation and the optimal one.max_iter
: the maximum number of iterations. Loops indefinitely until convergence if set to0
.guess
: a guess of the solution. Convergence will be significantly faster if an initial solution close to the actual solution is provided. Can be set toRotation3::identity()
if no other guesses come to mind.
pub fn renormalize(&mut self) where
N: RealField,
[src]
N: RealField,
Ensure this rotation is an orthonormal rotation matrix. This is useful when repeated computations might cause the matrix from progressively not being orthonormal anymore.
impl<N: SimdRealField> Rotation<N, U3>
[src]
impl<N: SimdRealField> Rotation<N, U3>
[src]pub fn angle(&self) -> N
[src]
The rotation angle in [0; pi].
Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); let rot = Rotation3::from_axis_angle(&axis, 1.78); assert_relative_eq!(rot.angle(), 1.78);
pub fn axis(&self) -> Option<Unit<Vector3<N>>> where
N: RealField,
[src]
N: RealField,
The rotation axis. Returns None
if the rotation angle is zero or PI.
Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); let angle = 1.2; let rot = Rotation3::from_axis_angle(&axis, angle); assert_relative_eq!(rot.axis().unwrap(), axis); // Case with a zero angle. let rot = Rotation3::from_axis_angle(&axis, 0.0); assert!(rot.axis().is_none());
pub fn scaled_axis(&self) -> Vector3<N> where
N: RealField,
[src]
N: RealField,
The rotation axis multiplied by the rotation angle.
Example
let axisangle = Vector3::new(0.1, 0.2, 0.3); let rot = Rotation3::new(axisangle); assert_relative_eq!(rot.scaled_axis(), axisangle, epsilon = 1.0e-6);
pub fn axis_angle(&self) -> Option<(Unit<Vector3<N>>, N)> where
N: RealField,
[src]
N: RealField,
The rotation axis and angle in ]0, pi] of this unit quaternion.
Returns None
if the angle is zero.
Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); let angle = 1.2; let rot = Rotation3::from_axis_angle(&axis, angle); let axis_angle = rot.axis_angle().unwrap(); assert_relative_eq!(axis_angle.0, axis); assert_relative_eq!(axis_angle.1, angle); // Case with a zero angle. let rot = Rotation3::from_axis_angle(&axis, 0.0); assert!(rot.axis_angle().is_none());
pub fn angle_to(&self, other: &Self) -> N where
N::Element: SimdRealField,
[src]
N::Element: SimdRealField,
The rotation angle needed to make self
and other
coincide.
Example
let rot1 = Rotation3::from_axis_angle(&Vector3::y_axis(), 1.0); let rot2 = Rotation3::from_axis_angle(&Vector3::x_axis(), 0.1); assert_relative_eq!(rot1.angle_to(&rot2), 1.0045657, epsilon = 1.0e-6);
pub fn to_euler_angles(&self) -> (N, N, N) where
N: RealField,
[src]
N: RealField,
This is renamed to use .euler_angles()
.
Creates Euler angles from a rotation.
The angles are produced in the form (roll, pitch, yaw).
pub fn euler_angles(&self) -> (N, N, N) where
N: RealField,
[src]
N: RealField,
Euler angles corresponding to this rotation from a rotation.
The angles are produced in the form (roll, pitch, yaw).
Example
let rot = Rotation3::from_euler_angles(0.1, 0.2, 0.3); let euler = rot.euler_angles(); assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6); assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6); assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
Trait Implementations
impl<N, D: DimName> AbsDiffEq<Rotation<N, D>> for Rotation<N, D> where
N: Scalar + AbsDiffEq,
DefaultAllocator: Allocator<N, D, D>,
N::Epsilon: Copy,
[src]
impl<N, D: DimName> AbsDiffEq<Rotation<N, D>> for Rotation<N, D> where
N: Scalar + AbsDiffEq,
DefaultAllocator: Allocator<N, D, D>,
N::Epsilon: Copy,
[src]type Epsilon = N::Epsilon
Used for specifying relative comparisons.
fn default_epsilon() -> Self::Epsilon
[src]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
[src]
pub fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
[src]
impl<N: SimdRealField, D: DimName> AbstractRotation<N, D> for Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D>,
[src]
impl<N: SimdRealField, D: DimName> AbstractRotation<N, D> for Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D>,
[src]fn identity() -> Self
[src]
fn inverse(&self) -> Self
[src]
fn inverse_mut(&mut self)
[src]
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
fn transform_point(&self, p: &Point<N, D>) -> Point<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
fn inverse_transform_unit_vector(
&self,
v: &Unit<VectorN<N, D>>
) -> Unit<VectorN<N, D>> where
DefaultAllocator: Allocator<N, D>,
[src]
&self,
v: &Unit<VectorN<N, D>>
) -> Unit<VectorN<N, D>> where
DefaultAllocator: Allocator<N, D>,
fn inverse_transform_point(&self, p: &Point<N, D>) -> Point<N, D> where
DefaultAllocator: Allocator<N, D>,
[src]
DefaultAllocator: Allocator<N, D>,
impl<N: Scalar, D: DimName> Clone for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D>,
<DefaultAllocator as Allocator<N, D, D>>::Buffer: Clone,
[src]
impl<N: Scalar, D: DimName> Clone for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D>,
<DefaultAllocator as Allocator<N, D, D>>::Buffer: Clone,
[src]fn clone(&self) -> Self
[src]
pub fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl<N: Debug + Scalar, D: Debug + DimName> Debug for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D>,
[src]
impl<N: Debug + Scalar, D: Debug + DimName> Debug for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D>,
[src]impl<'a, N: Scalar, D: DimName> Deserialize<'a> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D>,
Owned<N, D, D>: Deserialize<'a>,
[src]
impl<'a, N: Scalar, D: DimName> Deserialize<'a> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D>,
Owned<N, D, D>: Deserialize<'a>,
[src]fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error> where
Des: Deserializer<'a>,
[src]
Des: Deserializer<'a>,
impl<N, D: DimName> Display for Rotation<N, D> where
N: RealField + Display,
DefaultAllocator: Allocator<N, D, D> + Allocator<usize, D, D>,
[src]
impl<N, D: DimName> Display for Rotation<N, D> where
N: RealField + Display,
DefaultAllocator: Allocator<N, D, D> + Allocator<usize, D, D>,
[src]impl<N: SimdRealField> Distribution<Rotation<N, U2>> for Standard where
N::Element: SimdRealField,
OpenClosed01: Distribution<N>,
[src]
impl<N: SimdRealField> Distribution<Rotation<N, U2>> for Standard where
N::Element: SimdRealField,
OpenClosed01: Distribution<N>,
[src]impl<N: SimdRealField> Distribution<Rotation<N, U3>> for Standard where
N::Element: SimdRealField,
OpenClosed01: Distribution<N>,
[src]
impl<N: SimdRealField> Distribution<Rotation<N, U3>> for Standard where
N::Element: SimdRealField,
OpenClosed01: Distribution<N>,
[src]impl<'b, N: SimdRealField, D: DimName> Div<&'b Isometry<N, D, Rotation<N, D>>> for Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'b, N: SimdRealField, D: DimName> Div<&'b Isometry<N, D, Rotation<N, D>>> for Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<'a, 'b, N: SimdRealField, D: DimName> Div<&'b Isometry<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'a, 'b, N: SimdRealField, D: DimName> Div<&'b Isometry<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<'b, N, D: DimName> Div<&'b Rotation<N, D>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]
impl<'b, N, D: DimName> Div<&'b Rotation<N, D>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]impl<'a, 'b, N, D: DimName> Div<&'b Rotation<N, D>> for &'a Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]
impl<'a, 'b, N, D: DimName> Div<&'b Rotation<N, D>> for &'a Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]impl<'b, N: SimdRealField, D: DimName> Div<&'b Rotation<N, D>> for Isometry<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'b, N: SimdRealField, D: DimName> Div<&'b Rotation<N, D>> for Isometry<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<'a, 'b, N: SimdRealField, D: DimName> Div<&'b Rotation<N, D>> for &'a Isometry<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'a, 'b, N: SimdRealField, D: DimName> Div<&'b Rotation<N, D>> for &'a Isometry<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<'b, N: SimdRealField, D: DimName> Div<&'b Rotation<N, D>> for Similarity<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'b, N: SimdRealField, D: DimName> Div<&'b Rotation<N, D>> for Similarity<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<'a, 'b, N: SimdRealField, D: DimName> Div<&'b Rotation<N, D>> for &'a Similarity<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'a, 'b, N: SimdRealField, D: DimName> Div<&'b Rotation<N, D>> for &'a Similarity<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<&'b Rotation<N, D>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>,
[src]
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<&'b Rotation<N, D>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>,
[src]impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<&'b Rotation<N, D>> for &'a Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>,
[src]
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<&'b Rotation<N, D>> for &'a Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>,
[src]impl<'b, N, R1: Dim, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Div<&'b Rotation<N, D2>> for Matrix<N, R1, C1, SA> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, D2> + Allocator<N, R1, D2>,
DefaultAllocator: Allocator<N, R1, D2>,
ShapeConstraint: AreMultipliable<R1, C1, D2, D2>,
[src]
impl<'b, N, R1: Dim, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Div<&'b Rotation<N, D2>> for Matrix<N, R1, C1, SA> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, D2> + Allocator<N, R1, D2>,
DefaultAllocator: Allocator<N, R1, D2>,
ShapeConstraint: AreMultipliable<R1, C1, D2, D2>,
[src]impl<'a, 'b, N, R1: Dim, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Div<&'b Rotation<N, D2>> for &'a Matrix<N, R1, C1, SA> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, D2> + Allocator<N, R1, D2>,
DefaultAllocator: Allocator<N, R1, D2>,
ShapeConstraint: AreMultipliable<R1, C1, D2, D2>,
[src]
impl<'a, 'b, N, R1: Dim, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Div<&'b Rotation<N, D2>> for &'a Matrix<N, R1, C1, SA> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, D2> + Allocator<N, R1, D2>,
DefaultAllocator: Allocator<N, R1, D2>,
ShapeConstraint: AreMultipliable<R1, C1, D2, D2>,
[src]impl<'b, N: SimdRealField> Div<&'b Rotation<N, U2>> for UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]
impl<'b, N: SimdRealField> Div<&'b Rotation<N, U2>> for UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]impl<'a, 'b, N: SimdRealField> Div<&'b Rotation<N, U2>> for &'a UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]
impl<'a, 'b, N: SimdRealField> Div<&'b Rotation<N, U2>> for &'a UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]impl<'a, 'b, N: SimdRealField> Div<&'b Rotation<N, U3>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
[src]
impl<'a, 'b, N: SimdRealField> Div<&'b Rotation<N, U3>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
[src]impl<'b, N: SimdRealField> Div<&'b Rotation<N, U3>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
[src]
impl<'b, N: SimdRealField> Div<&'b Rotation<N, U3>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
[src]impl<'b, N: SimdRealField, D: DimName> Div<&'b Similarity<N, D, Rotation<N, D>>> for Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'b, N: SimdRealField, D: DimName> Div<&'b Similarity<N, D, Rotation<N, D>>> for Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]type Output = Similarity<N, D, Rotation<N, D>>
The resulting type after applying the /
operator.
fn div(self, right: &'b Similarity<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<'a, 'b, N: SimdRealField, D: DimName> Div<&'b Similarity<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'a, 'b, N: SimdRealField, D: DimName> Div<&'b Similarity<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]type Output = Similarity<N, D, Rotation<N, D>>
The resulting type after applying the /
operator.
fn div(self, right: &'b Similarity<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<&'b Transform<N, D, C>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<&'b Transform<N, D, C>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<&'b Transform<N, D, C>> for &'a Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<&'b Transform<N, D, C>> for &'a Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]impl<'b, N: SimdRealField> Div<&'b Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]
impl<'b, N: SimdRealField> Div<&'b Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]type Output = UnitComplex<N>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b UnitComplex<N>) -> Self::Output
[src]
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<Complex<N>>> for &'a Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<Complex<N>>> for &'a Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]type Output = UnitComplex<N>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b UnitComplex<N>) -> Self::Output
[src]
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for &'a Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
[src]
impl<'a, 'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for &'a Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
[src]type Output = UnitQuaternion<N>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b UnitQuaternion<N>) -> Self::Output
[src]
impl<'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
[src]
impl<'b, N: SimdRealField> Div<&'b Unit<Quaternion<N>>> for Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
[src]type Output = UnitQuaternion<N>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b UnitQuaternion<N>) -> Self::Output
[src]
impl<N: SimdRealField, D: DimName> Div<Isometry<N, D, Rotation<N, D>>> for Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<N: SimdRealField, D: DimName> Div<Isometry<N, D, Rotation<N, D>>> for Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<'a, N: SimdRealField, D: DimName> Div<Isometry<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'a, N: SimdRealField, D: DimName> Div<Isometry<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<N, D: DimName> Div<Rotation<N, D>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]
impl<N, D: DimName> Div<Rotation<N, D>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]impl<'a, N, D: DimName> Div<Rotation<N, D>> for &'a Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]
impl<'a, N, D: DimName> Div<Rotation<N, D>> for &'a Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]impl<N: SimdRealField, D: DimName> Div<Rotation<N, D>> for Isometry<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<N: SimdRealField, D: DimName> Div<Rotation<N, D>> for Isometry<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<'a, N: SimdRealField, D: DimName> Div<Rotation<N, D>> for &'a Isometry<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'a, N: SimdRealField, D: DimName> Div<Rotation<N, D>> for &'a Isometry<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<N: SimdRealField, D: DimName> Div<Rotation<N, D>> for Similarity<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<N: SimdRealField, D: DimName> Div<Rotation<N, D>> for Similarity<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<'a, N: SimdRealField, D: DimName> Div<Rotation<N, D>> for &'a Similarity<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'a, N: SimdRealField, D: DimName> Div<Rotation<N, D>> for &'a Similarity<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<Rotation<N, D>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>,
[src]
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<Rotation<N, D>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>,
[src]impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<Rotation<N, D>> for &'a Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>,
[src]
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<Rotation<N, D>> for &'a Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>,
[src]impl<N, R1: Dim, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Div<Rotation<N, D2>> for Matrix<N, R1, C1, SA> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, D2> + Allocator<N, R1, D2>,
DefaultAllocator: Allocator<N, R1, D2>,
ShapeConstraint: AreMultipliable<R1, C1, D2, D2>,
[src]
impl<N, R1: Dim, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Div<Rotation<N, D2>> for Matrix<N, R1, C1, SA> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, D2> + Allocator<N, R1, D2>,
DefaultAllocator: Allocator<N, R1, D2>,
ShapeConstraint: AreMultipliable<R1, C1, D2, D2>,
[src]impl<'a, N, R1: Dim, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Div<Rotation<N, D2>> for &'a Matrix<N, R1, C1, SA> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, D2> + Allocator<N, R1, D2>,
DefaultAllocator: Allocator<N, R1, D2>,
ShapeConstraint: AreMultipliable<R1, C1, D2, D2>,
[src]
impl<'a, N, R1: Dim, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Div<Rotation<N, D2>> for &'a Matrix<N, R1, C1, SA> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, D2> + Allocator<N, R1, D2>,
DefaultAllocator: Allocator<N, R1, D2>,
ShapeConstraint: AreMultipliable<R1, C1, D2, D2>,
[src]impl<N: SimdRealField> Div<Rotation<N, U2>> for UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]
impl<N: SimdRealField> Div<Rotation<N, U2>> for UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]impl<'a, N: SimdRealField> Div<Rotation<N, U2>> for &'a UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]
impl<'a, N: SimdRealField> Div<Rotation<N, U2>> for &'a UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]impl<'a, N: SimdRealField> Div<Rotation<N, U3>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
[src]
impl<'a, N: SimdRealField> Div<Rotation<N, U3>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
[src]impl<N: SimdRealField> Div<Rotation<N, U3>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
[src]
impl<N: SimdRealField> Div<Rotation<N, U3>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
[src]impl<N: SimdRealField, D: DimName> Div<Similarity<N, D, Rotation<N, D>>> for Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<N: SimdRealField, D: DimName> Div<Similarity<N, D, Rotation<N, D>>> for Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]type Output = Similarity<N, D, Rotation<N, D>>
The resulting type after applying the /
operator.
fn div(self, right: Similarity<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<'a, N: SimdRealField, D: DimName> Div<Similarity<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'a, N: SimdRealField, D: DimName> Div<Similarity<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]type Output = Similarity<N, D, Rotation<N, D>>
The resulting type after applying the /
operator.
fn div(self, right: Similarity<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<Transform<N, D, C>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<Transform<N, D, C>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<Transform<N, D, C>> for &'a Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Div<Transform<N, D, C>> for &'a Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]impl<N: SimdRealField> Div<Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]
impl<N: SimdRealField> Div<Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]type Output = UnitComplex<N>
The resulting type after applying the /
operator.
fn div(self, rhs: UnitComplex<N>) -> Self::Output
[src]
impl<'a, N: SimdRealField> Div<Unit<Complex<N>>> for &'a Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]
impl<'a, N: SimdRealField> Div<Unit<Complex<N>>> for &'a Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]type Output = UnitComplex<N>
The resulting type after applying the /
operator.
fn div(self, rhs: UnitComplex<N>) -> Self::Output
[src]
impl<'a, N: SimdRealField> Div<Unit<Quaternion<N>>> for &'a Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
[src]
impl<'a, N: SimdRealField> Div<Unit<Quaternion<N>>> for &'a Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
[src]type Output = UnitQuaternion<N>
The resulting type after applying the /
operator.
fn div(self, rhs: UnitQuaternion<N>) -> Self::Output
[src]
impl<N: SimdRealField> Div<Unit<Quaternion<N>>> for Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
[src]
impl<N: SimdRealField> Div<Unit<Quaternion<N>>> for Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
[src]type Output = UnitQuaternion<N>
The resulting type after applying the /
operator.
fn div(self, rhs: UnitQuaternion<N>) -> Self::Output
[src]
impl<'b, N, R1: DimName, C1: DimName> DivAssign<&'b Rotation<N, C1>> for MatrixMN<N, R1, C1> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, C1, C1>,
[src]
impl<'b, N, R1: DimName, C1: DimName> DivAssign<&'b Rotation<N, C1>> for MatrixMN<N, R1, C1> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, C1, C1>,
[src]fn div_assign(&mut self, right: &'b Rotation<N, C1>)
[src]
impl<'b, N, D: DimName> DivAssign<&'b Rotation<N, D>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]
impl<'b, N, D: DimName> DivAssign<&'b Rotation<N, D>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]fn div_assign(&mut self, right: &'b Rotation<N, D>)
[src]
impl<'b, N, D: DimName> DivAssign<&'b Rotation<N, D>> for Isometry<N, D, Rotation<N, D>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, D, D>,
[src]
impl<'b, N, D: DimName> DivAssign<&'b Rotation<N, D>> for Isometry<N, D, Rotation<N, D>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, D, D>,
[src]fn div_assign(&mut self, rhs: &'b Rotation<N, D>)
[src]
impl<'b, N, D: DimName> DivAssign<&'b Rotation<N, D>> for Similarity<N, D, Rotation<N, D>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, D, D>,
[src]
impl<'b, N, D: DimName> DivAssign<&'b Rotation<N, D>> for Similarity<N, D, Rotation<N, D>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, D, D>,
[src]fn div_assign(&mut self, rhs: &'b Rotation<N, D>)
[src]
impl<'b, N, D: DimNameAdd<U1>, C: TCategory> DivAssign<&'b Rotation<N, D>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D>,
[src]
impl<'b, N, D: DimNameAdd<U1>, C: TCategory> DivAssign<&'b Rotation<N, D>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D>,
[src]fn div_assign(&mut self, rhs: &'b Rotation<N, D>)
[src]
impl<'b, N: SimdRealField> DivAssign<&'b Rotation<N, U2>> for UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]
impl<'b, N: SimdRealField> DivAssign<&'b Rotation<N, U2>> for UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]fn div_assign(&mut self, rhs: &'b Rotation<N, U2>)
[src]
impl<'b, N: SimdRealField> DivAssign<&'b Rotation<N, U3>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
[src]
impl<'b, N: SimdRealField> DivAssign<&'b Rotation<N, U3>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
[src]fn div_assign(&mut self, rhs: &'b Rotation<N, U3>)
[src]
impl<'b, N: SimdRealField> DivAssign<&'b Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]
impl<'b, N: SimdRealField> DivAssign<&'b Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]fn div_assign(&mut self, rhs: &'b UnitComplex<N>)
[src]
impl<N, R1: DimName, C1: DimName> DivAssign<Rotation<N, C1>> for MatrixMN<N, R1, C1> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, C1, C1>,
[src]
impl<N, R1: DimName, C1: DimName> DivAssign<Rotation<N, C1>> for MatrixMN<N, R1, C1> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, C1, C1>,
[src]fn div_assign(&mut self, right: Rotation<N, C1>)
[src]
impl<N, D: DimName> DivAssign<Rotation<N, D>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]
impl<N, D: DimName> DivAssign<Rotation<N, D>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]fn div_assign(&mut self, right: Rotation<N, D>)
[src]
impl<N, D: DimName> DivAssign<Rotation<N, D>> for Isometry<N, D, Rotation<N, D>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, D, D>,
[src]
impl<N, D: DimName> DivAssign<Rotation<N, D>> for Isometry<N, D, Rotation<N, D>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, D, D>,
[src]fn div_assign(&mut self, rhs: Rotation<N, D>)
[src]
impl<N, D: DimName> DivAssign<Rotation<N, D>> for Similarity<N, D, Rotation<N, D>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, D, D>,
[src]
impl<N, D: DimName> DivAssign<Rotation<N, D>> for Similarity<N, D, Rotation<N, D>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, D, D>,
[src]fn div_assign(&mut self, rhs: Rotation<N, D>)
[src]
impl<N, D: DimNameAdd<U1>, C: TCategory> DivAssign<Rotation<N, D>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D>,
[src]
impl<N, D: DimNameAdd<U1>, C: TCategory> DivAssign<Rotation<N, D>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D>,
[src]fn div_assign(&mut self, rhs: Rotation<N, D>)
[src]
impl<N: SimdRealField> DivAssign<Rotation<N, U2>> for UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]
impl<N: SimdRealField> DivAssign<Rotation<N, U2>> for UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]fn div_assign(&mut self, rhs: Rotation<N, U2>)
[src]
impl<N: SimdRealField> DivAssign<Rotation<N, U3>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
[src]
impl<N: SimdRealField> DivAssign<Rotation<N, U3>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
[src]fn div_assign(&mut self, rhs: Rotation<N, U3>)
[src]
impl<N: SimdRealField> DivAssign<Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]
impl<N: SimdRealField> DivAssign<Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]fn div_assign(&mut self, rhs: UnitComplex<N>)
[src]
impl<N: Scalar + PrimitiveSimdValue, D: DimName> From<[Rotation<<N as SimdValue>::Element, D>; 16]> for Rotation<N, D> where
N: From<[<N as SimdValue>::Element; 16]>,
N::Element: Scalar + Copy,
DefaultAllocator: Allocator<N, D, D> + Allocator<N::Element, D, D>,
[src]
impl<N: Scalar + PrimitiveSimdValue, D: DimName> From<[Rotation<<N as SimdValue>::Element, D>; 16]> for Rotation<N, D> where
N: From<[<N as SimdValue>::Element; 16]>,
N::Element: Scalar + Copy,
DefaultAllocator: Allocator<N, D, D> + Allocator<N::Element, D, D>,
[src]impl<N: Scalar + PrimitiveSimdValue, D: DimName> From<[Rotation<<N as SimdValue>::Element, D>; 2]> for Rotation<N, D> where
N: From<[<N as SimdValue>::Element; 2]>,
N::Element: Scalar + Copy,
DefaultAllocator: Allocator<N, D, D> + Allocator<N::Element, D, D>,
[src]
impl<N: Scalar + PrimitiveSimdValue, D: DimName> From<[Rotation<<N as SimdValue>::Element, D>; 2]> for Rotation<N, D> where
N: From<[<N as SimdValue>::Element; 2]>,
N::Element: Scalar + Copy,
DefaultAllocator: Allocator<N, D, D> + Allocator<N::Element, D, D>,
[src]impl<N: Scalar + PrimitiveSimdValue, D: DimName> From<[Rotation<<N as SimdValue>::Element, D>; 4]> for Rotation<N, D> where
N: From<[<N as SimdValue>::Element; 4]>,
N::Element: Scalar + Copy,
DefaultAllocator: Allocator<N, D, D> + Allocator<N::Element, D, D>,
[src]
impl<N: Scalar + PrimitiveSimdValue, D: DimName> From<[Rotation<<N as SimdValue>::Element, D>; 4]> for Rotation<N, D> where
N: From<[<N as SimdValue>::Element; 4]>,
N::Element: Scalar + Copy,
DefaultAllocator: Allocator<N, D, D> + Allocator<N::Element, D, D>,
[src]impl<N: Scalar + PrimitiveSimdValue, D: DimName> From<[Rotation<<N as SimdValue>::Element, D>; 8]> for Rotation<N, D> where
N: From<[<N as SimdValue>::Element; 8]>,
N::Element: Scalar + Copy,
DefaultAllocator: Allocator<N, D, D> + Allocator<N::Element, D, D>,
[src]
impl<N: Scalar + PrimitiveSimdValue, D: DimName> From<[Rotation<<N as SimdValue>::Element, D>; 8]> for Rotation<N, D> where
N: From<[<N as SimdValue>::Element; 8]>,
N::Element: Scalar + Copy,
DefaultAllocator: Allocator<N, D, D> + Allocator<N::Element, D, D>,
[src]impl<N: SimdRealField> From<Rotation<N, U2>> for UnitComplex<N> where
N::Element: SimdRealField,
[src]
impl<N: SimdRealField> From<Rotation<N, U2>> for UnitComplex<N> where
N::Element: SimdRealField,
[src]impl<N: SimdRealField> From<Rotation<N, U3>> for UnitQuaternion<N> where
N::Element: SimdRealField,
[src]
impl<N: SimdRealField> From<Rotation<N, U3>> for UnitQuaternion<N> where
N::Element: SimdRealField,
[src]impl<N: Scalar + Hash, D: DimName + Hash> Hash for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D>,
<DefaultAllocator as Allocator<N, D, D>>::Buffer: Hash,
[src]
impl<N: Scalar + Hash, D: DimName + Hash> Hash for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D>,
<DefaultAllocator as Allocator<N, D, D>>::Buffer: Hash,
[src]impl<N: Scalar, D: DimName> Index<(usize, usize)> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D>,
[src]
impl<N: Scalar, D: DimName> Index<(usize, usize)> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D>,
[src]impl<'b, N: SimdRealField, D: DimName> Mul<&'b Isometry<N, D, Rotation<N, D>>> for Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'b, N: SimdRealField, D: DimName> Mul<&'b Isometry<N, D, Rotation<N, D>>> for Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<'a, 'b, N: SimdRealField, D: DimName> Mul<&'b Isometry<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'a, 'b, N: SimdRealField, D: DimName> Mul<&'b Isometry<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<'b, N, D1: DimName, R2: Dim, C2: Dim, SB: Storage<N, R2, C2>> Mul<&'b Matrix<N, R2, C2, SB>> for Rotation<N, D1> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D1, D1> + Allocator<N, R2, C2> + Allocator<N, D1, C2>,
DefaultAllocator: Allocator<N, D1, C2>,
ShapeConstraint: AreMultipliable<D1, D1, R2, C2>,
[src]
impl<'b, N, D1: DimName, R2: Dim, C2: Dim, SB: Storage<N, R2, C2>> Mul<&'b Matrix<N, R2, C2, SB>> for Rotation<N, D1> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D1, D1> + Allocator<N, R2, C2> + Allocator<N, D1, C2>,
DefaultAllocator: Allocator<N, D1, C2>,
ShapeConstraint: AreMultipliable<D1, D1, R2, C2>,
[src]impl<'a, 'b, N, D1: DimName, R2: Dim, C2: Dim, SB: Storage<N, R2, C2>> Mul<&'b Matrix<N, R2, C2, SB>> for &'a Rotation<N, D1> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D1, D1> + Allocator<N, R2, C2> + Allocator<N, D1, C2>,
DefaultAllocator: Allocator<N, D1, C2>,
ShapeConstraint: AreMultipliable<D1, D1, R2, C2>,
[src]
impl<'a, 'b, N, D1: DimName, R2: Dim, C2: Dim, SB: Storage<N, R2, C2>> Mul<&'b Matrix<N, R2, C2, SB>> for &'a Rotation<N, D1> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D1, D1> + Allocator<N, R2, C2> + Allocator<N, D1, C2>,
DefaultAllocator: Allocator<N, D1, C2>,
ShapeConstraint: AreMultipliable<D1, D1, R2, C2>,
[src]impl<'b, N, D: DimName> Mul<&'b Point<N, D>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
DefaultAllocator: Allocator<N, D>,
ShapeConstraint: AreMultipliable<D, D, D, U1>,
[src]
impl<'b, N, D: DimName> Mul<&'b Point<N, D>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
DefaultAllocator: Allocator<N, D>,
ShapeConstraint: AreMultipliable<D, D, D, U1>,
[src]impl<'a, 'b, N, D: DimName> Mul<&'b Point<N, D>> for &'a Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
DefaultAllocator: Allocator<N, D>,
ShapeConstraint: AreMultipliable<D, D, D, U1>,
[src]
impl<'a, 'b, N, D: DimName> Mul<&'b Point<N, D>> for &'a Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
DefaultAllocator: Allocator<N, D>,
ShapeConstraint: AreMultipliable<D, D, D, U1>,
[src]impl<'b, N, D: DimName> Mul<&'b Rotation<N, D>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]
impl<'b, N, D: DimName> Mul<&'b Rotation<N, D>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]impl<'a, 'b, N, D: DimName> Mul<&'b Rotation<N, D>> for &'a Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]
impl<'a, 'b, N, D: DimName> Mul<&'b Rotation<N, D>> for &'a Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]impl<'b, N: SimdRealField, D: DimName> Mul<&'b Rotation<N, D>> for Isometry<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'b, N: SimdRealField, D: DimName> Mul<&'b Rotation<N, D>> for Isometry<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<'a, 'b, N: SimdRealField, D: DimName> Mul<&'b Rotation<N, D>> for &'a Isometry<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'a, 'b, N: SimdRealField, D: DimName> Mul<&'b Rotation<N, D>> for &'a Isometry<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<'b, N: SimdRealField, D: DimName> Mul<&'b Rotation<N, D>> for Translation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'b, N: SimdRealField, D: DimName> Mul<&'b Rotation<N, D>> for Translation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<'a, 'b, N: SimdRealField, D: DimName> Mul<&'b Rotation<N, D>> for &'a Translation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'a, 'b, N: SimdRealField, D: DimName> Mul<&'b Rotation<N, D>> for &'a Translation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<'b, N: SimdRealField, D: DimName> Mul<&'b Rotation<N, D>> for Similarity<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'b, N: SimdRealField, D: DimName> Mul<&'b Rotation<N, D>> for Similarity<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<'a, 'b, N: SimdRealField, D: DimName> Mul<&'b Rotation<N, D>> for &'a Similarity<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'a, 'b, N: SimdRealField, D: DimName> Mul<&'b Rotation<N, D>> for &'a Similarity<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<&'b Rotation<N, D>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>,
[src]
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<&'b Rotation<N, D>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>,
[src]impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<&'b Rotation<N, D>> for &'a Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>,
[src]
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<&'b Rotation<N, D>> for &'a Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>,
[src]impl<'b, N, R1: Dim, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Mul<&'b Rotation<N, D2>> for Matrix<N, R1, C1, SA> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, D2> + Allocator<N, R1, D2>,
DefaultAllocator: Allocator<N, R1, D2>,
ShapeConstraint: AreMultipliable<R1, C1, D2, D2>,
[src]
impl<'b, N, R1: Dim, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Mul<&'b Rotation<N, D2>> for Matrix<N, R1, C1, SA> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, D2> + Allocator<N, R1, D2>,
DefaultAllocator: Allocator<N, R1, D2>,
ShapeConstraint: AreMultipliable<R1, C1, D2, D2>,
[src]impl<'a, 'b, N, R1: Dim, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Mul<&'b Rotation<N, D2>> for &'a Matrix<N, R1, C1, SA> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, D2> + Allocator<N, R1, D2>,
DefaultAllocator: Allocator<N, R1, D2>,
ShapeConstraint: AreMultipliable<R1, C1, D2, D2>,
[src]
impl<'a, 'b, N, R1: Dim, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Mul<&'b Rotation<N, D2>> for &'a Matrix<N, R1, C1, SA> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, D2> + Allocator<N, R1, D2>,
DefaultAllocator: Allocator<N, R1, D2>,
ShapeConstraint: AreMultipliable<R1, C1, D2, D2>,
[src]impl<'b, N: SimdRealField> Mul<&'b Rotation<N, U2>> for UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]
impl<'b, N: SimdRealField> Mul<&'b Rotation<N, U2>> for UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]impl<'a, 'b, N: SimdRealField> Mul<&'b Rotation<N, U2>> for &'a UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]
impl<'a, 'b, N: SimdRealField> Mul<&'b Rotation<N, U2>> for &'a UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]impl<'a, 'b, N: SimdRealField> Mul<&'b Rotation<N, U3>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
[src]
impl<'a, 'b, N: SimdRealField> Mul<&'b Rotation<N, U3>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
[src]impl<'b, N: SimdRealField> Mul<&'b Rotation<N, U3>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
[src]
impl<'b, N: SimdRealField> Mul<&'b Rotation<N, U3>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
[src]impl<'b, N: SimdRealField, D: DimName> Mul<&'b Similarity<N, D, Rotation<N, D>>> for Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'b, N: SimdRealField, D: DimName> Mul<&'b Similarity<N, D, Rotation<N, D>>> for Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]type Output = Similarity<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Similarity<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<'a, 'b, N: SimdRealField, D: DimName> Mul<&'b Similarity<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'a, 'b, N: SimdRealField, D: DimName> Mul<&'b Similarity<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]type Output = Similarity<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: &'b Similarity<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<&'b Transform<N, D, C>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<&'b Transform<N, D, C>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<&'b Transform<N, D, C>> for &'a Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<&'b Transform<N, D, C>> for &'a Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]impl<'b, N: SimdRealField, D: DimName> Mul<&'b Translation<N, D>> for Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'b, N: SimdRealField, D: DimName> Mul<&'b Translation<N, D>> for Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<'a, 'b, N: SimdRealField, D: DimName> Mul<&'b Translation<N, D>> for &'a Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'a, 'b, N: SimdRealField, D: DimName> Mul<&'b Translation<N, D>> for &'a Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<'b, N: SimdRealField> Mul<&'b Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]
impl<'b, N: SimdRealField> Mul<&'b Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]type Output = UnitComplex<N>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b UnitComplex<N>) -> Self::Output
[src]
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Complex<N>>> for &'a Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Complex<N>>> for &'a Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]type Output = UnitComplex<N>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b UnitComplex<N>) -> Self::Output
[src]
impl<'b, N, D: DimName, S: Storage<N, D>> Mul<&'b Unit<Matrix<N, D, U1, S>>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
DefaultAllocator: Allocator<N, D>,
ShapeConstraint: AreMultipliable<D, D, D, U1>,
[src]
impl<'b, N, D: DimName, S: Storage<N, D>> Mul<&'b Unit<Matrix<N, D, U1, S>>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
DefaultAllocator: Allocator<N, D>,
ShapeConstraint: AreMultipliable<D, D, D, U1>,
[src]impl<'a, 'b, N, D: DimName, S: Storage<N, D>> Mul<&'b Unit<Matrix<N, D, U1, S>>> for &'a Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
DefaultAllocator: Allocator<N, D>,
ShapeConstraint: AreMultipliable<D, D, D, U1>,
[src]
impl<'a, 'b, N, D: DimName, S: Storage<N, D>> Mul<&'b Unit<Matrix<N, D, U1, S>>> for &'a Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
DefaultAllocator: Allocator<N, D>,
ShapeConstraint: AreMultipliable<D, D, D, U1>,
[src]impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for &'a Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
[src]
impl<'a, 'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for &'a Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
[src]type Output = UnitQuaternion<N>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b UnitQuaternion<N>) -> Self::Output
[src]
impl<'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
[src]
impl<'b, N: SimdRealField> Mul<&'b Unit<Quaternion<N>>> for Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
[src]type Output = UnitQuaternion<N>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b UnitQuaternion<N>) -> Self::Output
[src]
impl<N: SimdRealField, D: DimName> Mul<Isometry<N, D, Rotation<N, D>>> for Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<N: SimdRealField, D: DimName> Mul<Isometry<N, D, Rotation<N, D>>> for Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<'a, N: SimdRealField, D: DimName> Mul<Isometry<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'a, N: SimdRealField, D: DimName> Mul<Isometry<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<N, D1: DimName, R2: Dim, C2: Dim, SB: Storage<N, R2, C2>> Mul<Matrix<N, R2, C2, SB>> for Rotation<N, D1> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D1, D1> + Allocator<N, R2, C2> + Allocator<N, D1, C2>,
DefaultAllocator: Allocator<N, D1, C2>,
ShapeConstraint: AreMultipliable<D1, D1, R2, C2>,
[src]
impl<N, D1: DimName, R2: Dim, C2: Dim, SB: Storage<N, R2, C2>> Mul<Matrix<N, R2, C2, SB>> for Rotation<N, D1> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D1, D1> + Allocator<N, R2, C2> + Allocator<N, D1, C2>,
DefaultAllocator: Allocator<N, D1, C2>,
ShapeConstraint: AreMultipliable<D1, D1, R2, C2>,
[src]impl<'a, N, D1: DimName, R2: Dim, C2: Dim, SB: Storage<N, R2, C2>> Mul<Matrix<N, R2, C2, SB>> for &'a Rotation<N, D1> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D1, D1> + Allocator<N, R2, C2> + Allocator<N, D1, C2>,
DefaultAllocator: Allocator<N, D1, C2>,
ShapeConstraint: AreMultipliable<D1, D1, R2, C2>,
[src]
impl<'a, N, D1: DimName, R2: Dim, C2: Dim, SB: Storage<N, R2, C2>> Mul<Matrix<N, R2, C2, SB>> for &'a Rotation<N, D1> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D1, D1> + Allocator<N, R2, C2> + Allocator<N, D1, C2>,
DefaultAllocator: Allocator<N, D1, C2>,
ShapeConstraint: AreMultipliable<D1, D1, R2, C2>,
[src]impl<N, D: DimName> Mul<Point<N, D>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
DefaultAllocator: Allocator<N, D>,
ShapeConstraint: AreMultipliable<D, D, D, U1>,
[src]
impl<N, D: DimName> Mul<Point<N, D>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
DefaultAllocator: Allocator<N, D>,
ShapeConstraint: AreMultipliable<D, D, D, U1>,
[src]impl<'a, N, D: DimName> Mul<Point<N, D>> for &'a Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
DefaultAllocator: Allocator<N, D>,
ShapeConstraint: AreMultipliable<D, D, D, U1>,
[src]
impl<'a, N, D: DimName> Mul<Point<N, D>> for &'a Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
DefaultAllocator: Allocator<N, D>,
ShapeConstraint: AreMultipliable<D, D, D, U1>,
[src]impl<N, D: DimName> Mul<Rotation<N, D>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]
impl<N, D: DimName> Mul<Rotation<N, D>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]impl<'a, N, D: DimName> Mul<Rotation<N, D>> for &'a Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]
impl<'a, N, D: DimName> Mul<Rotation<N, D>> for &'a Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]impl<N: SimdRealField, D: DimName> Mul<Rotation<N, D>> for Isometry<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<N: SimdRealField, D: DimName> Mul<Rotation<N, D>> for Isometry<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<'a, N: SimdRealField, D: DimName> Mul<Rotation<N, D>> for &'a Isometry<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'a, N: SimdRealField, D: DimName> Mul<Rotation<N, D>> for &'a Isometry<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<N: SimdRealField, D: DimName> Mul<Rotation<N, D>> for Translation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<N: SimdRealField, D: DimName> Mul<Rotation<N, D>> for Translation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<'a, N: SimdRealField, D: DimName> Mul<Rotation<N, D>> for &'a Translation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'a, N: SimdRealField, D: DimName> Mul<Rotation<N, D>> for &'a Translation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<N: SimdRealField, D: DimName> Mul<Rotation<N, D>> for Similarity<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<N: SimdRealField, D: DimName> Mul<Rotation<N, D>> for Similarity<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<'a, N: SimdRealField, D: DimName> Mul<Rotation<N, D>> for &'a Similarity<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'a, N: SimdRealField, D: DimName> Mul<Rotation<N, D>> for &'a Similarity<N, D, Rotation<N, D>> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<Rotation<N, D>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>,
[src]
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<Rotation<N, D>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>,
[src]impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<Rotation<N, D>> for &'a Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>,
[src]
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<Rotation<N, D>> for &'a Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, D>,
[src]impl<N, R1: Dim, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Mul<Rotation<N, D2>> for Matrix<N, R1, C1, SA> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, D2> + Allocator<N, R1, D2>,
DefaultAllocator: Allocator<N, R1, D2>,
ShapeConstraint: AreMultipliable<R1, C1, D2, D2>,
[src]
impl<N, R1: Dim, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Mul<Rotation<N, D2>> for Matrix<N, R1, C1, SA> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, D2> + Allocator<N, R1, D2>,
DefaultAllocator: Allocator<N, R1, D2>,
ShapeConstraint: AreMultipliable<R1, C1, D2, D2>,
[src]impl<'a, N, R1: Dim, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Mul<Rotation<N, D2>> for &'a Matrix<N, R1, C1, SA> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, D2> + Allocator<N, R1, D2>,
DefaultAllocator: Allocator<N, R1, D2>,
ShapeConstraint: AreMultipliable<R1, C1, D2, D2>,
[src]
impl<'a, N, R1: Dim, C1: Dim, D2: DimName, SA: Storage<N, R1, C1>> Mul<Rotation<N, D2>> for &'a Matrix<N, R1, C1, SA> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, D2, D2> + Allocator<N, R1, D2>,
DefaultAllocator: Allocator<N, R1, D2>,
ShapeConstraint: AreMultipliable<R1, C1, D2, D2>,
[src]impl<N: SimdRealField> Mul<Rotation<N, U2>> for UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]
impl<N: SimdRealField> Mul<Rotation<N, U2>> for UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]impl<'a, N: SimdRealField> Mul<Rotation<N, U2>> for &'a UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]
impl<'a, N: SimdRealField> Mul<Rotation<N, U2>> for &'a UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]impl<'a, N: SimdRealField> Mul<Rotation<N, U3>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
[src]
impl<'a, N: SimdRealField> Mul<Rotation<N, U3>> for &'a UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
[src]impl<N: SimdRealField> Mul<Rotation<N, U3>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
[src]
impl<N: SimdRealField> Mul<Rotation<N, U3>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
[src]impl<N: SimdRealField, D: DimName> Mul<Similarity<N, D, Rotation<N, D>>> for Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<N: SimdRealField, D: DimName> Mul<Similarity<N, D, Rotation<N, D>>> for Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]type Output = Similarity<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: Similarity<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<'a, N: SimdRealField, D: DimName> Mul<Similarity<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'a, N: SimdRealField, D: DimName> Mul<Similarity<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]type Output = Similarity<N, D, Rotation<N, D>>
The resulting type after applying the *
operator.
fn mul(self, right: Similarity<N, D, Rotation<N, D>>) -> Self::Output
[src]
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<Transform<N, D, C>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<Transform<N, D, C>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<Transform<N, D, C>> for &'a Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]
impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>> Mul<Transform<N, D, C>> for &'a Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>,
[src]impl<N: SimdRealField, D: DimName> Mul<Translation<N, D>> for Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<N: SimdRealField, D: DimName> Mul<Translation<N, D>> for Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<'a, N: SimdRealField, D: DimName> Mul<Translation<N, D>> for &'a Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]
impl<'a, N: SimdRealField, D: DimName> Mul<Translation<N, D>> for &'a Rotation<N, D> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
[src]impl<N: SimdRealField> Mul<Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]
impl<N: SimdRealField> Mul<Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]type Output = UnitComplex<N>
The resulting type after applying the *
operator.
fn mul(self, rhs: UnitComplex<N>) -> Self::Output
[src]
impl<'a, N: SimdRealField> Mul<Unit<Complex<N>>> for &'a Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]
impl<'a, N: SimdRealField> Mul<Unit<Complex<N>>> for &'a Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]type Output = UnitComplex<N>
The resulting type after applying the *
operator.
fn mul(self, rhs: UnitComplex<N>) -> Self::Output
[src]
impl<N, D: DimName, S: Storage<N, D>> Mul<Unit<Matrix<N, D, U1, S>>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
DefaultAllocator: Allocator<N, D>,
ShapeConstraint: AreMultipliable<D, D, D, U1>,
[src]
impl<N, D: DimName, S: Storage<N, D>> Mul<Unit<Matrix<N, D, U1, S>>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
DefaultAllocator: Allocator<N, D>,
ShapeConstraint: AreMultipliable<D, D, D, U1>,
[src]impl<'a, N, D: DimName, S: Storage<N, D>> Mul<Unit<Matrix<N, D, U1, S>>> for &'a Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
DefaultAllocator: Allocator<N, D>,
ShapeConstraint: AreMultipliable<D, D, D, U1>,
[src]
impl<'a, N, D: DimName, S: Storage<N, D>> Mul<Unit<Matrix<N, D, U1, S>>> for &'a Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>,
DefaultAllocator: Allocator<N, D>,
ShapeConstraint: AreMultipliable<D, D, D, U1>,
[src]impl<'a, N: SimdRealField> Mul<Unit<Quaternion<N>>> for &'a Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
[src]
impl<'a, N: SimdRealField> Mul<Unit<Quaternion<N>>> for &'a Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
[src]type Output = UnitQuaternion<N>
The resulting type after applying the *
operator.
fn mul(self, rhs: UnitQuaternion<N>) -> Self::Output
[src]
impl<N: SimdRealField> Mul<Unit<Quaternion<N>>> for Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
[src]
impl<N: SimdRealField> Mul<Unit<Quaternion<N>>> for Rotation<N, U3> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U3, U3> + Allocator<N, U4, U1>,
[src]type Output = UnitQuaternion<N>
The resulting type after applying the *
operator.
fn mul(self, rhs: UnitQuaternion<N>) -> Self::Output
[src]
impl<'b, N, R1: DimName, C1: DimName> MulAssign<&'b Rotation<N, C1>> for MatrixMN<N, R1, C1> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, C1, C1>,
[src]
impl<'b, N, R1: DimName, C1: DimName> MulAssign<&'b Rotation<N, C1>> for MatrixMN<N, R1, C1> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, C1, C1>,
[src]fn mul_assign(&mut self, right: &'b Rotation<N, C1>)
[src]
impl<'b, N, D: DimName> MulAssign<&'b Rotation<N, D>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]
impl<'b, N, D: DimName> MulAssign<&'b Rotation<N, D>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]fn mul_assign(&mut self, right: &'b Rotation<N, D>)
[src]
impl<'b, N, D: DimName> MulAssign<&'b Rotation<N, D>> for Isometry<N, D, Rotation<N, D>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, D, D>,
[src]
impl<'b, N, D: DimName> MulAssign<&'b Rotation<N, D>> for Isometry<N, D, Rotation<N, D>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, D, D>,
[src]fn mul_assign(&mut self, rhs: &'b Rotation<N, D>)
[src]
impl<'b, N, D: DimName> MulAssign<&'b Rotation<N, D>> for Similarity<N, D, Rotation<N, D>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, D, D>,
[src]
impl<'b, N, D: DimName> MulAssign<&'b Rotation<N, D>> for Similarity<N, D, Rotation<N, D>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, D, D>,
[src]fn mul_assign(&mut self, rhs: &'b Rotation<N, D>)
[src]
impl<'b, N, D: DimNameAdd<U1>, C: TCategory> MulAssign<&'b Rotation<N, D>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D>,
[src]
impl<'b, N, D: DimNameAdd<U1>, C: TCategory> MulAssign<&'b Rotation<N, D>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D>,
[src]fn mul_assign(&mut self, rhs: &'b Rotation<N, D>)
[src]
impl<'b, N: SimdRealField> MulAssign<&'b Rotation<N, U2>> for UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]
impl<'b, N: SimdRealField> MulAssign<&'b Rotation<N, U2>> for UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]fn mul_assign(&mut self, rhs: &'b Rotation<N, U2>)
[src]
impl<'b, N: SimdRealField> MulAssign<&'b Rotation<N, U3>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
[src]
impl<'b, N: SimdRealField> MulAssign<&'b Rotation<N, U3>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
[src]fn mul_assign(&mut self, rhs: &'b Rotation<N, U3>)
[src]
impl<'b, N: SimdRealField> MulAssign<&'b Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]
impl<'b, N: SimdRealField> MulAssign<&'b Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]fn mul_assign(&mut self, rhs: &'b UnitComplex<N>)
[src]
impl<N, R1: DimName, C1: DimName> MulAssign<Rotation<N, C1>> for MatrixMN<N, R1, C1> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, C1, C1>,
[src]
impl<N, R1: DimName, C1: DimName> MulAssign<Rotation<N, C1>> for MatrixMN<N, R1, C1> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, R1, C1> + Allocator<N, C1, C1>,
[src]fn mul_assign(&mut self, right: Rotation<N, C1>)
[src]
impl<N, D: DimName> MulAssign<Rotation<N, D>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]
impl<N, D: DimName> MulAssign<Rotation<N, D>> for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]fn mul_assign(&mut self, right: Rotation<N, D>)
[src]
impl<N, D: DimName> MulAssign<Rotation<N, D>> for Isometry<N, D, Rotation<N, D>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, D, D>,
[src]
impl<N, D: DimName> MulAssign<Rotation<N, D>> for Isometry<N, D, Rotation<N, D>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, D, D>,
[src]fn mul_assign(&mut self, rhs: Rotation<N, D>)
[src]
impl<N, D: DimName> MulAssign<Rotation<N, D>> for Similarity<N, D, Rotation<N, D>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, D, D>,
[src]
impl<N, D: DimName> MulAssign<Rotation<N, D>> for Similarity<N, D, Rotation<N, D>> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + SimdRealField,
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, D, U1> + Allocator<N, D, D>,
[src]fn mul_assign(&mut self, rhs: Rotation<N, D>)
[src]
impl<N, D: DimNameAdd<U1>, C: TCategory> MulAssign<Rotation<N, D>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D>,
[src]
impl<N, D: DimNameAdd<U1>, C: TCategory> MulAssign<Rotation<N, D>> for Transform<N, D, C> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, D>,
[src]fn mul_assign(&mut self, rhs: Rotation<N, D>)
[src]
impl<N: SimdRealField> MulAssign<Rotation<N, U2>> for UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]
impl<N: SimdRealField> MulAssign<Rotation<N, U2>> for UnitComplex<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]fn mul_assign(&mut self, rhs: Rotation<N, U2>)
[src]
impl<N: SimdRealField> MulAssign<Rotation<N, U3>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
[src]
impl<N: SimdRealField> MulAssign<Rotation<N, U3>> for UnitQuaternion<N> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U3>,
[src]fn mul_assign(&mut self, rhs: Rotation<N, U3>)
[src]
impl<N: SimdRealField> MulAssign<Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]
impl<N: SimdRealField> MulAssign<Unit<Complex<N>>> for Rotation<N, U2> where
N::Element: SimdRealField,
DefaultAllocator: Allocator<N, U2, U2>,
[src]fn mul_assign(&mut self, rhs: UnitComplex<N>)
[src]
impl<N, D: DimName> One for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]
impl<N, D: DimName> One for Rotation<N, D> where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
[src]impl<N: Scalar + PartialEq, D: DimName> PartialEq<Rotation<N, D>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D>,
[src]
impl<N: Scalar + PartialEq, D: DimName> PartialEq<Rotation<N, D>> for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D>,
[src]impl<N, D: DimName> RelativeEq<Rotation<N, D>> for Rotation<N, D> where
N: Scalar + RelativeEq,
DefaultAllocator: Allocator<N, D, D>,
N::Epsilon: Copy,
[src]
impl<N, D: DimName> RelativeEq<Rotation<N, D>> for Rotation<N, D> where
N: Scalar + RelativeEq,
DefaultAllocator: Allocator<N, D, D>,
N::Epsilon: Copy,
[src]fn default_max_relative() -> Self::Epsilon
[src]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
[src]
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
pub fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
[src]
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
impl<N: Scalar, D: DimName> Serialize for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D>,
Owned<N, D, D>: Serialize,
[src]
impl<N: Scalar, D: DimName> Serialize for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D>,
Owned<N, D, D>: Serialize,
[src]impl<N, D> SimdValue for Rotation<N, D> where
N: Scalar + SimdValue,
D: DimName,
N::Element: Scalar,
DefaultAllocator: Allocator<N, D, D> + Allocator<N::Element, D, D>,
[src]
impl<N, D> SimdValue for Rotation<N, D> where
N: Scalar + SimdValue,
D: DimName,
N::Element: Scalar,
DefaultAllocator: Allocator<N, D, D> + Allocator<N::Element, D, D>,
[src]type Element = Rotation<N::Element, D>
The type of the elements of each lane of this SIMD value.
type SimdBool = N::SimdBool
Type of the result of comparing two SIMD values like self
.
fn lanes() -> usize
[src]
fn splat(val: Self::Element) -> Self
[src]
fn extract(&self, i: usize) -> Self::Element
[src]
unsafe fn extract_unchecked(&self, i: usize) -> Self::Element
[src]
fn replace(&mut self, i: usize, val: Self::Element)
[src]
unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element)
[src]
fn select(self, cond: Self::SimdBool, other: Self) -> Self
[src]
pub fn map_lanes(self, f: impl Fn(Self::Element) -> Self::Element) -> Self where
Self: Clone,
[src]
Self: Clone,
pub fn zip_map_lanes(
self,
b: Self,
f: impl Fn(Self::Element, Self::Element) -> Self::Element
) -> Self where
Self: Clone,
[src]
self,
b: Self,
f: impl Fn(Self::Element, Self::Element) -> Self::Element
) -> Self where
Self: Clone,
impl<N1, N2, D: DimName, R> SubsetOf<Isometry<N2, D, R>> for Rotation<N1, D> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AbstractRotation<N2, D> + SupersetOf<Self>,
DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D>,
[src]
impl<N1, N2, D: DimName, R> SubsetOf<Isometry<N2, D, R>> for Rotation<N1, D> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AbstractRotation<N2, D> + SupersetOf<Self>,
DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D>,
[src]fn to_superset(&self) -> Isometry<N2, D, R>
[src]
fn is_in_subset(iso: &Isometry<N2, D, R>) -> bool
[src]
fn from_superset_unchecked(iso: &Isometry<N2, D, R>) -> Self
[src]
pub fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2, D> SubsetOf<Matrix<N2, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N2, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>> for Rotation<N1, D> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
D: DimNameAdd<U1> + DimMin<D, Output = D>,
DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D>,
[src]
impl<N1, N2, D> SubsetOf<Matrix<N2, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N2, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>> for Rotation<N1, D> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
D: DimNameAdd<U1> + DimMin<D, Output = D>,
DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D>,
[src]fn to_superset(&self) -> MatrixN<N2, DimNameSum<D, U1>>
[src]
fn is_in_subset(m: &MatrixN<N2, DimNameSum<D, U1>>) -> bool
[src]
fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self
[src]
pub fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2, D: DimName> SubsetOf<Rotation<N2, D>> for Rotation<N1, D> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D, D>,
[src]
impl<N1, N2, D: DimName> SubsetOf<Rotation<N2, D>> for Rotation<N1, D> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D, D>,
[src]fn to_superset(&self) -> Rotation<N2, D>
[src]
fn is_in_subset(rot: &Rotation<N2, D>) -> bool
[src]
fn from_superset_unchecked(rot: &Rotation<N2, D>) -> Self
[src]
pub fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2> SubsetOf<Rotation<N2, U2>> for UnitComplex<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
[src]
impl<N1, N2> SubsetOf<Rotation<N2, U2>> for UnitComplex<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
[src]fn to_superset(&self) -> Rotation2<N2>
[src]
fn is_in_subset(rot: &Rotation2<N2>) -> bool
[src]
fn from_superset_unchecked(rot: &Rotation2<N2>) -> Self
[src]
pub fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2> SubsetOf<Rotation<N2, U3>> for UnitQuaternion<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
[src]
impl<N1, N2> SubsetOf<Rotation<N2, U3>> for UnitQuaternion<N1> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
[src]fn to_superset(&self) -> Rotation3<N2>
[src]
fn is_in_subset(rot: &Rotation3<N2>) -> bool
[src]
fn from_superset_unchecked(rot: &Rotation3<N2>) -> Self
[src]
pub fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2, D: DimName, R> SubsetOf<Similarity<N2, D, R>> for Rotation<N1, D> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AbstractRotation<N2, D> + SupersetOf<Self>,
DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D>,
[src]
impl<N1, N2, D: DimName, R> SubsetOf<Similarity<N2, D, R>> for Rotation<N1, D> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AbstractRotation<N2, D> + SupersetOf<Self>,
DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D>,
[src]fn to_superset(&self) -> Similarity<N2, D, R>
[src]
fn is_in_subset(sim: &Similarity<N2, D, R>) -> bool
[src]
fn from_superset_unchecked(sim: &Similarity<N2, D, R>) -> Self
[src]
pub fn from_superset(element: &T) -> Option<Self>
[src]
impl<N1, N2, D, C> SubsetOf<Transform<N2, D, C>> for Rotation<N1, D> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
D: DimNameAdd<U1> + DimMin<D, Output = D>,
DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D>,
[src]
impl<N1, N2, D, C> SubsetOf<Transform<N2, D, C>> for Rotation<N1, D> where
N1: RealField,
N2: RealField + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
D: DimNameAdd<U1> + DimMin<D, Output = D>,
DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D>,
[src]fn to_superset(&self) -> Transform<N2, D, C>
[src]
fn is_in_subset(t: &Transform<N2, D, C>) -> bool
[src]
fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self
[src]
pub fn from_superset(element: &T) -> Option<Self>
[src]
impl<N, D: DimName> UlpsEq<Rotation<N, D>> for Rotation<N, D> where
N: Scalar + UlpsEq,
DefaultAllocator: Allocator<N, D, D>,
N::Epsilon: Copy,
[src]
impl<N, D: DimName> UlpsEq<Rotation<N, D>> for Rotation<N, D> where
N: Scalar + UlpsEq,
DefaultAllocator: Allocator<N, D, D>,
N::Epsilon: Copy,
[src]impl<N: Scalar + Copy, D: DimName> Copy for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D>,
<DefaultAllocator as Allocator<N, D, D>>::Buffer: Copy,
[src]
DefaultAllocator: Allocator<N, D, D>,
<DefaultAllocator as Allocator<N, D, D>>::Buffer: Copy,
impl<N: Scalar + Eq, D: DimName> Eq for Rotation<N, D> where
DefaultAllocator: Allocator<N, D, D>,
[src]
DefaultAllocator: Allocator<N, D, D>,
Auto Trait Implementations
impl<N, D> !RefUnwindSafe for Rotation<N, D>
impl<N, D> !Send for Rotation<N, D>
impl<N, D> !Sync for Rotation<N, D>
impl<N, D> !Unpin for Rotation<N, D>
impl<N, D> !UnwindSafe for Rotation<N, D>
Blanket Implementations
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
[src]
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
[src]pub fn to_subset(&self) -> Option<SS>
[src]
pub fn is_in_subset(&self) -> bool
[src]
pub fn to_subset_unchecked(&self) -> SS
[src]
pub fn from_subset(element: &SS) -> SP
[src]
impl<T, Right> ClosedDiv<Right> for T where
T: Div<Right, Output = T> + DivAssign<Right>,
[src]
T: Div<Right, Output = T> + DivAssign<Right>,
impl<T, Right> ClosedMul<Right> for T where
T: Mul<Right, Output = T> + MulAssign<Right>,
[src]
T: Mul<Right, Output = T> + MulAssign<Right>,