[][src]Struct rin::graphics::image::ImageBuffer

pub struct ImageBuffer<P, Container> where
    P: Pixel
{ /* fields omitted */ }

Generic image buffer

Methods

impl<P, Container> ImageBuffer<P, Container> where
    Container: Deref<Target = [<P as Pixel>::Subpixel]>,
    P: Pixel + 'static,
    <P as Pixel>::Subpixel: 'static, 
[src]

Contructs a buffer from a generic container (for example a Vec or a slice)

Returns None if the container is not big enough

Returns the underlying raw buffer

The width and height of this image.

The width of this image.

The height of this image.

Returns an iterator over the pixels of this image.

Enumerates over the pixels of the image. The iterator yields the coordinates of each pixel along with a reference to them.

Gets a reference to the pixel at location (x, y)

Panics

Panics if (x, y) is out of the bounds (width, height).

impl<P, Container> ImageBuffer<P, Container> where
    Container: Deref<Target = [<P as Pixel>::Subpixel]> + DerefMut,
    P: Pixel + 'static,
    <P as Pixel>::Subpixel: 'static, 
[src]

Returns an iterator over the mutable pixels of this image.

Enumerates over the pixels of the image. The iterator yields the coordinates of each pixel along with a mutable reference to them.

Gets a reference to the mutable pixel at location (x, y)

Panics

Panics if (x, y) is out of the bounds (width, height).

Puts a pixel at location (x, y)

Panics

Panics if (x, y) is out of the bounds (width, height).

impl<P, Container> ImageBuffer<P, Container> where
    Container: Deref<Target = [u8]>,
    P: Pixel<Subpixel = u8> + 'static, 
[src]

Saves the buffer to a file at the path specified.

The image format is derived from the file extension. Currently only jpeg and png files are supported.

impl<P> ImageBuffer<P, Vec<<P as Pixel>::Subpixel>> where
    P: 'static + Pixel,
    <P as Pixel>::Subpixel: 'static, 
[src]

Creates a new image buffer based on a Vec<P::Subpixel>.

Constructs a new ImageBuffer by copying a pixel

Constructs a new ImageBuffer by repeated application of the supplied function. The arguments to the function are the pixel's x and y coordinates.

Creates an image buffer out of an existing buffer. Returns None if the buffer is not big enough.

Important traits for Vec<u8>

Consumes the image buffer and returns the underlying data as an owned buffer

impl ImageBuffer<Luma<u8>, Vec<u8>>
[src]

Expands a color palette by re-using the existing buffer. Assumes 8 bit per pixel. Uses an optionally transparent index to adjust it's alpha value accordingly.

Methods from Deref<Target = [<P as Pixel>::Subpixel]>

Returns the number of elements in the slice.

Examples

let a = [1, 2, 3];
assert_eq!(a.len(), 3);

Returns true if the slice has a length of 0.

Examples

let a = [1, 2, 3];
assert!(!a.is_empty());

Returns the first element of the slice, or None if it is empty.

Examples

let v = [10, 40, 30];
assert_eq!(Some(&10), v.first());

let w: &[i32] = &[];
assert_eq!(None, w.first());

Returns a mutable pointer to the first element of the slice, or None if it is empty.

Examples

let x = &mut [0, 1, 2];

if let Some(first) = x.first_mut() {
    *first = 5;
}
assert_eq!(x, &[5, 1, 2]);

Returns the first and all the rest of the elements of the slice, or None if it is empty.

Examples

let x = &[0, 1, 2];

if let Some((first, elements)) = x.split_first() {
    assert_eq!(first, &0);
    assert_eq!(elements, &[1, 2]);
}

Returns the first and all the rest of the elements of the slice, or None if it is empty.

Examples

let x = &mut [0, 1, 2];

if let Some((first, elements)) = x.split_first_mut() {
    *first = 3;
    elements[0] = 4;
    elements[1] = 5;
}
assert_eq!(x, &[3, 4, 5]);

Returns the last and all the rest of the elements of the slice, or None if it is empty.

Examples

let x = &[0, 1, 2];

if let Some((last, elements)) = x.split_last() {
    assert_eq!(last, &2);
    assert_eq!(elements, &[0, 1]);
}

Returns the last and all the rest of the elements of the slice, or None if it is empty.

Examples

let x = &mut [0, 1, 2];

if let Some((last, elements)) = x.split_last_mut() {
    *last = 3;
    elements[0] = 4;
    elements[1] = 5;
}
assert_eq!(x, &[4, 5, 3]);

Returns the last element of the slice, or None if it is empty.

Examples

let v = [10, 40, 30];
assert_eq!(Some(&30), v.last());

let w: &[i32] = &[];
assert_eq!(None, w.last());

Returns a mutable pointer to the last item in the slice.

Examples

let x = &mut [0, 1, 2];

if let Some(last) = x.last_mut() {
    *last = 10;
}
assert_eq!(x, &[0, 1, 10]);

Returns a reference to an element or subslice depending on the type of index.

  • If given a position, returns a reference to the element at that position or None if out of bounds.
  • If given a range, returns the subslice corresponding to that range, or None if out of bounds.

Examples

let v = [10, 40, 30];
assert_eq!(Some(&40), v.get(1));
assert_eq!(Some(&[10, 40][..]), v.get(0..2));
assert_eq!(None, v.get(3));
assert_eq!(None, v.get(0..4));

Returns a mutable reference to an element or subslice depending on the type of index (see get) or None if the index is out of bounds.

Examples

let x = &mut [0, 1, 2];

if let Some(elem) = x.get_mut(1) {
    *elem = 42;
}
assert_eq!(x, &[0, 42, 2]);

Returns a reference to an element or subslice, without doing bounds checking.

This is generally not recommended, use with caution! For a safe alternative see get.

Examples

let x = &[1, 2, 4];

unsafe {
    assert_eq!(x.get_unchecked(1), &2);
}

Returns a mutable reference to an element or subslice, without doing bounds checking.

This is generally not recommended, use with caution! For a safe alternative see get_mut.

Examples

let x = &mut [1, 2, 4];

unsafe {
    let elem = x.get_unchecked_mut(1);
    *elem = 13;
}
assert_eq!(x, &[1, 13, 4]);

Returns a raw pointer to the slice's buffer.

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.

Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

Examples

let x = &[1, 2, 4];
let x_ptr = x.as_ptr();

unsafe {
    for i in 0..x.len() {
        assert_eq!(x.get_unchecked(i), &*x_ptr.add(i));
    }
}

Returns an unsafe mutable pointer to the slice's buffer.

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.

Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

Examples

let x = &mut [1, 2, 4];
let x_ptr = x.as_mut_ptr();

unsafe {
    for i in 0..x.len() {
        *x_ptr.add(i) += 2;
    }
}
assert_eq!(x, &[3, 4, 6]);

Swaps two elements in the slice.

Arguments

  • a - The index of the first element
  • b - The index of the second element

Panics

Panics if a or b are out of bounds.

Examples

let mut v = ["a", "b", "c", "d"];
v.swap(1, 3);
assert!(v == ["a", "d", "c", "b"]);

Reverses the order of elements in the slice, in place.

Examples

let mut v = [1, 2, 3];
v.reverse();
assert!(v == [3, 2, 1]);

Returns an iterator over the slice.

Examples

let x = &[1, 2, 4];
let mut iterator = x.iter();

assert_eq!(iterator.next(), Some(&1));
assert_eq!(iterator.next(), Some(&2));
assert_eq!(iterator.next(), Some(&4));
assert_eq!(iterator.next(), None);

Returns an iterator that allows modifying each value.

Examples

let x = &mut [1, 2, 4];
for elem in x.iter_mut() {
    *elem += 2;
}
assert_eq!(x, &[3, 4, 6]);

Returns an iterator over all contiguous windows of length size. The windows overlap. If the slice is shorter than size, the iterator returns no values.

Panics

Panics if size is 0.

Examples

let slice = ['r', 'u', 's', 't'];
let mut iter = slice.windows(2);
assert_eq!(iter.next().unwrap(), &['r', 'u']);
assert_eq!(iter.next().unwrap(), &['u', 's']);
assert_eq!(iter.next().unwrap(), &['s', 't']);
assert!(iter.next().is_none());

If the slice is shorter than size:

let slice = ['f', 'o', 'o'];
let mut iter = slice.windows(4);
assert!(iter.next().is_none());

Returns an iterator over chunk_size elements of the slice at a time, starting at the beginning of the slice.

The chunks are slices and do not overlap. If chunk_size does not divide the length of the slice, then the last chunk will not have length chunk_size.

See chunks_exact for a variant of this iterator that returns chunks of always exactly chunk_size elements, and rchunks for the same iterator but starting at the end of the slice of the slice.

Panics

Panics if chunk_size is 0.

Examples

let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.chunks(2);
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert_eq!(iter.next().unwrap(), &['m']);
assert!(iter.next().is_none());

Returns an iterator over chunk_size elements of the slice at a time, starting at the beginning of the slice.

The chunks are mutable slices, and do not overlap. If chunk_size does not divide the length of the slice, then the last chunk will not have length chunk_size.

See chunks_exact_mut for a variant of this iterator that returns chunks of always exactly chunk_size elements, and rchunks_mut for the same iterator but starting at the end of the slice of the slice.

Panics

Panics if chunk_size is 0.

Examples

let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;

for chunk in v.chunks_mut(2) {
    for elem in chunk.iter_mut() {
        *elem += count;
    }
    count += 1;
}
assert_eq!(v, &[1, 1, 2, 2, 3]);

Returns an iterator over chunk_size elements of the slice at a time, starting at the beginning of the slice.

The chunks are slices and do not overlap. If chunk_size does not divide the length of the slice, then the last up to chunk_size-1 elements will be omitted and can be retrieved from the remainder function of the iterator.

Due to each chunk having exactly chunk_size elements, the compiler can often optimize the resulting code better than in the case of chunks.

See chunks for a variant of this iterator that also returns the remainder as a smaller chunk, and rchunks_exact for the same iterator but starting at the end of the slice of the slice.

Panics

Panics if chunk_size is 0.

Examples

let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.chunks_exact(2);
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), &['m']);

Returns an iterator over chunk_size elements of the slice at a time, starting at the beginning of the slice.

The chunks are mutable slices, and do not overlap. If chunk_size does not divide the length of the slice, then the last up to chunk_size-1 elements will be omitted and can be retrieved from the into_remainder function of the iterator.

Due to each chunk having exactly chunk_size elements, the compiler can often optimize the resulting code better than in the case of chunks_mut.

See chunks_mut for a variant of this iterator that also returns the remainder as a smaller chunk, and rchunks_exact_mut for the same iterator but starting at the end of the slice of the slice.

Panics

Panics if chunk_size is 0.

Examples

let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;

for chunk in v.chunks_exact_mut(2) {
    for elem in chunk.iter_mut() {
        *elem += count;
    }
    count += 1;
}
assert_eq!(v, &[1, 1, 2, 2, 0]);

Returns an iterator over chunk_size elements of the slice at a time, starting at the end of the slice.

The chunks are slices and do not overlap. If chunk_size does not divide the length of the slice, then the last chunk will not have length chunk_size.

See rchunks_exact for a variant of this iterator that returns chunks of always exactly chunk_size elements, and chunks for the same iterator but starting at the beginning of the slice.

Panics

Panics if chunk_size is 0.

Examples

let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.rchunks(2);
assert_eq!(iter.next().unwrap(), &['e', 'm']);
assert_eq!(iter.next().unwrap(), &['o', 'r']);
assert_eq!(iter.next().unwrap(), &['l']);
assert!(iter.next().is_none());

Returns an iterator over chunk_size elements of the slice at a time, starting at the end of the slice.

The chunks are mutable slices, and do not overlap. If chunk_size does not divide the length of the slice, then the last chunk will not have length chunk_size.

See rchunks_exact_mut for a variant of this iterator that returns chunks of always exactly chunk_size elements, and chunks_mut for the same iterator but starting at the beginning of the slice.

Panics

Panics if chunk_size is 0.

Examples

let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;

for chunk in v.rchunks_mut(2) {
    for elem in chunk.iter_mut() {
        *elem += count;
    }
    count += 1;
}
assert_eq!(v, &[3, 2, 2, 1, 1]);

Returns an iterator over chunk_size elements of the slice at a time, starting at the beginning of the slice.

The chunks are slices and do not overlap. If chunk_size does not divide the length of the slice, then the last up to chunk_size-1 elements will be omitted and can be retrieved from the remainder function of the iterator.

Due to each chunk having exactly chunk_size elements, the compiler can often optimize the resulting code better than in the case of [chunks].

See rchunks for a variant of this iterator that also returns the remainder as a smaller chunk, and chunks_exact for the same iterator but starting at the beginning of the slice of the slice.

Panics

Panics if chunk_size is 0.

Examples

let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.rchunks_exact(2);
assert_eq!(iter.next().unwrap(), &['e', 'm']);
assert_eq!(iter.next().unwrap(), &['o', 'r']);
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), &['l']);

Returns an iterator over chunk_size elements of the slice at a time, starting at the end of the slice.

The chunks are mutable slices, and do not overlap. If chunk_size does not divide the length of the slice, then the last up to chunk_size-1 elements will be omitted and can be retrieved from the into_remainder function of the iterator.

Due to each chunk having exactly chunk_size elements, the compiler can often optimize the resulting code better than in the case of [chunks_mut].

See rchunks_mut for a variant of this iterator that also returns the remainder as a smaller chunk, and chunks_exact_mut for the same iterator but starting at the beginning of the slice of the slice.

Panics

Panics if chunk_size is 0.

Examples

let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;

for chunk in v.rchunks_exact_mut(2) {
    for elem in chunk.iter_mut() {
        *elem += count;
    }
    count += 1;
}
assert_eq!(v, &[0, 2, 2, 1, 1]);

Divides one slice into two at an index.

The first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

Panics

Panics if mid > len.

Examples

let v = [1, 2, 3, 4, 5, 6];

{
   let (left, right) = v.split_at(0);
   assert!(left == []);
   assert!(right == [1, 2, 3, 4, 5, 6]);
}

{
    let (left, right) = v.split_at(2);
    assert!(left == [1, 2]);
    assert!(right == [3, 4, 5, 6]);
}

{
    let (left, right) = v.split_at(6);
    assert!(left == [1, 2, 3, 4, 5, 6]);
    assert!(right == []);
}

Divides one mutable slice into two at an index.

The first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

Panics

Panics if mid > len.

Examples

let mut v = [1, 0, 3, 0, 5, 6];
// scoped to restrict the lifetime of the borrows
{
    let (left, right) = v.split_at_mut(2);
    assert!(left == [1, 0]);
    assert!(right == [3, 0, 5, 6]);
    left[1] = 2;
    right[1] = 4;
}
assert!(v == [1, 2, 3, 4, 5, 6]);

Returns an iterator over subslices separated by elements that match pred. The matched element is not contained in the subslices.

Examples

let slice = [10, 40, 33, 20];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10, 40]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());

If the first element is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last element in the slice is matched, an empty slice will be the last item returned by the iterator:

let slice = [10, 40, 33];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10, 40]);
assert_eq!(iter.next().unwrap(), &[]);
assert!(iter.next().is_none());

If two matched elements are directly adjacent, an empty slice will be present between them:

let slice = [10, 6, 33, 20];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10]);
assert_eq!(iter.next().unwrap(), &[]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());

Returns an iterator over mutable subslices separated by elements that match pred. The matched element is not contained in the subslices.

Examples

let mut v = [10, 40, 30, 20, 60, 50];

for group in v.split_mut(|num| *num % 3 == 0) {
    group[0] = 1;
}
assert_eq!(v, [1, 40, 30, 1, 60, 1]);

Returns an iterator over subslices separated by elements that match pred, starting at the end of the slice and working backwards. The matched element is not contained in the subslices.

Examples

let slice = [11, 22, 33, 0, 44, 55];
let mut iter = slice.rsplit(|num| *num == 0);

assert_eq!(iter.next().unwrap(), &[44, 55]);
assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
assert_eq!(iter.next(), None);

As with split(), if the first or last element is matched, an empty slice will be the first (or last) item returned by the iterator.

let v = &[0, 1, 1, 2, 3, 5, 8];
let mut it = v.rsplit(|n| *n % 2 == 0);
assert_eq!(it.next().unwrap(), &[]);
assert_eq!(it.next().unwrap(), &[3, 5]);
assert_eq!(it.next().unwrap(), &[1, 1]);
assert_eq!(it.next().unwrap(), &[]);
assert_eq!(it.next(), None);

Returns an iterator over mutable subslices separated by elements that match pred, starting at the end of the slice and working backwards. The matched element is not contained in the subslices.

Examples

let mut v = [100, 400, 300, 200, 600, 500];

let mut count = 0;
for group in v.rsplit_mut(|num| *num % 3 == 0) {
    count += 1;
    group[0] = count;
}
assert_eq!(v, [3, 400, 300, 2, 600, 1]);

Returns an iterator over subslices separated by elements that match pred, limited to returning at most n items. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

Print the slice split once by numbers divisible by 3 (i.e. [10, 40], [20, 60, 50]):

let v = [10, 40, 30, 20, 60, 50];

for group in v.splitn(2, |num| *num % 3 == 0) {
    println!("{:?}", group);
}

Returns an iterator over subslices separated by elements that match pred, limited to returning at most n items. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

let mut v = [10, 40, 30, 20, 60, 50];

for group in v.splitn_mut(2, |num| *num % 3 == 0) {
    group[0] = 1;
}
assert_eq!(v, [1, 40, 30, 1, 60, 50]);

Returns an iterator over subslices separated by elements that match pred limited to returning at most n items. This starts at the end of the slice and works backwards. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

Print the slice split once, starting from the end, by numbers divisible by 3 (i.e. [50], [10, 40, 30, 20]):

let v = [10, 40, 30, 20, 60, 50];

for group in v.rsplitn(2, |num| *num % 3 == 0) {
    println!("{:?}", group);
}

Returns an iterator over subslices separated by elements that match pred limited to returning at most n items. This starts at the end of the slice and works backwards. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

let mut s = [10, 40, 30, 20, 60, 50];

for group in s.rsplitn_mut(2, |num| *num % 3 == 0) {
    group[0] = 1;
}
assert_eq!(s, [1, 40, 30, 20, 60, 1]);

Returns true if the slice contains an element with the given value.

Examples

let v = [10, 40, 30];
assert!(v.contains(&30));
assert!(!v.contains(&50));

Returns true if needle is a prefix of the slice.

Examples

let v = [10, 40, 30];
assert!(v.starts_with(&[10]));
assert!(v.starts_with(&[10, 40]));
assert!(!v.starts_with(&[50]));
assert!(!v.starts_with(&[10, 50]));

Always returns true if needle is an empty slice:

let v = &[10, 40, 30];
assert!(v.starts_with(&[]));
let v: &[u8] = &[];
assert!(v.starts_with(&[]));

Returns true if needle is a suffix of the slice.

Examples

let v = [10, 40, 30];
assert!(v.ends_with(&[30]));
assert!(v.ends_with(&[40, 30]));
assert!(!v.ends_with(&[50]));
assert!(!v.ends_with(&[50, 30]));

Always returns true if needle is an empty slice:

let v = &[10, 40, 30];
assert!(v.ends_with(&[]));
let v: &[u8] = &[];
assert!(v.ends_with(&[]));

Binary searches this sorted slice for a given element.

If the value is found then [Result::Ok] is returned, containing the index of the matching element. If there are multiple matches, then any one of the matches could be returned. If the value is not found then [Result::Err] is returned, containing the index where a matching element could be inserted while maintaining sorted order.

Examples

Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1, 4].

let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

assert_eq!(s.binary_search(&13),  Ok(9));
assert_eq!(s.binary_search(&4),   Err(7));
assert_eq!(s.binary_search(&100), Err(13));
let r = s.binary_search(&1);
assert!(match r { Ok(1..=4) => true, _ => false, });

Binary searches this sorted slice with a comparator function.

The comparator function should implement an order consistent with the sort order of the underlying slice, returning an order code that indicates whether its argument is Less, Equal or Greater the desired target.

If the value is found then [Result::Ok] is returned, containing the index of the matching element. If there are multiple matches, then any one of the matches could be returned. If the value is not found then [Result::Err] is returned, containing the index where a matching element could be inserted while maintaining sorted order.

Examples

Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1, 4].

let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

let seek = 13;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
let seek = 4;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
let seek = 100;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
let seek = 1;
let r = s.binary_search_by(|probe| probe.cmp(&seek));
assert!(match r { Ok(1..=4) => true, _ => false, });

Binary searches this sorted slice with a key extraction function.

Assumes that the slice is sorted by the key, for instance with sort_by_key using the same key extraction function.

If the value is found then [Result::Ok] is returned, containing the index of the matching element. If there are multiple matches, then any one of the matches could be returned. If the value is not found then [Result::Err] is returned, containing the index where a matching element could be inserted while maintaining sorted order.

Examples

Looks up a series of four elements in a slice of pairs sorted by their second elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1, 4].

let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
         (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
         (1, 21), (2, 34), (4, 55)];

assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b),  Ok(9));
assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b),   Err(7));
assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13));
let r = s.binary_search_by_key(&1, |&(a,b)| b);
assert!(match r { Ok(1..=4) => true, _ => false, });

Sorts the slice, but may not preserve the order of equal elements.

This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), and O(n log n) worst-case.

Current implementation

The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.

It is typically faster than stable sorting, except in a few special cases, e.g. when the slice consists of several concatenated sorted sequences.

Examples

let mut v = [-5, 4, 1, -3, 2];

v.sort_unstable();
assert!(v == [-5, -3, 1, 2, 4]);

Sorts the slice with a comparator function, but may not preserve the order of equal elements.

This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), and O(n log n) worst-case.

The comparator function must define a total ordering for the elements in the slice. If the ordering is not total, the order of the elements is unspecified. An order is a total order if it is (for all a, b and c):

  • total and antisymmetric: exactly one of a < b, a == b or a > b is true; and
  • transitive, a < b and b < c implies a < c. The same must hold for both == and >.

For example, while [f64] doesn't implement [Ord] because NaN != NaN, we can use partial_cmp as our sort function when we know the slice doesn't contain a NaN.

let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
floats.sort_by(|a, b| a.partial_cmp(b).unwrap());
assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);

Current implementation

The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.

It is typically faster than stable sorting, except in a few special cases, e.g. when the slice consists of several concatenated sorted sequences.

Examples

let mut v = [5, 4, 1, 3, 2];
v.sort_unstable_by(|a, b| a.cmp(b));
assert!(v == [1, 2, 3, 4, 5]);

// reverse sorting
v.sort_unstable_by(|a, b| b.cmp(a));
assert!(v == [5, 4, 3, 2, 1]);

Sorts the slice with a key extraction function, but may not preserve the order of equal elements.

This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), and O(m n log(m n)) worst-case, where the key function is O(m).

Current implementation

The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.

Examples

let mut v = [-5i32, 4, 1, -3, 2];

v.sort_unstable_by_key(|k| k.abs());
assert!(v == [1, 2, -3, 4, -5]);

🔬 This is a nightly-only experimental API. (slice_partition_dedup)

Moves all consecutive repeated elements to the end of the slice according to the [PartialEq] trait implementation.

Returns two slices. The first contains no consecutive repeated elements. The second contains all the duplicates in no specified order.

If the slice is sorted, the first returned slice contains no duplicates.

Examples

#![feature(slice_partition_dedup)]

let mut slice = [1, 2, 2, 3, 3, 2, 1, 1];

let (dedup, duplicates) = slice.partition_dedup();

assert_eq!(dedup, [1, 2, 3, 2, 1]);
assert_eq!(duplicates, [2, 3, 1]);

🔬 This is a nightly-only experimental API. (slice_partition_dedup)

Moves all but the first of consecutive elements to the end of the slice satisfying a given equality relation.

Returns two slices. The first contains no consecutive repeated elements. The second contains all the duplicates in no specified order.

The same_bucket function is passed references to two elements from the slice and must determine if the elements compare equal. The elements are passed in opposite order from their order in the slice, so if same_bucket(a, b) returns true, a is moved at the end of the slice.

If the slice is sorted, the first returned slice contains no duplicates.

Examples

#![feature(slice_partition_dedup)]

let mut slice = ["foo", "Foo", "BAZ", "Bar", "bar", "baz", "BAZ"];

let (dedup, duplicates) = slice.partition_dedup_by(|a, b| a.eq_ignore_ascii_case(b));

assert_eq!(dedup, ["foo", "BAZ", "Bar", "baz"]);
assert_eq!(duplicates, ["bar", "Foo", "BAZ"]);

🔬 This is a nightly-only experimental API. (slice_partition_dedup)

Moves all but the first of consecutive elements to the end of the slice that resolve to the same key.

Returns two slices. The first contains no consecutive repeated elements. The second contains all the duplicates in no specified order.

If the slice is sorted, the first returned slice contains no duplicates.

Examples

#![feature(slice_partition_dedup)]

let mut slice = [10, 20, 21, 30, 30, 20, 11, 13];

let (dedup, duplicates) = slice.partition_dedup_by_key(|i| *i / 10);

assert_eq!(dedup, [10, 20, 30, 20, 11]);
assert_eq!(duplicates, [21, 30, 13]);

Rotates the slice in-place such that the first mid elements of the slice move to the end while the last self.len() - mid elements move to the front. After calling rotate_left, the element previously at index mid will become the first element in the slice.

Panics

This function will panic if mid is greater than the length of the slice. Note that mid == self.len() does not panic and is a no-op rotation.

Complexity

Takes linear (in self.len()) time.

Examples

let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a.rotate_left(2);
assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);

Rotating a subslice:

let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a[1..5].rotate_left(1);
assert_eq!(a, ['a', 'c', 'd', 'e', 'b', 'f']);

Rotates the slice in-place such that the first self.len() - k elements of the slice move to the end while the last k elements move to the front. After calling rotate_right, the element previously at index self.len() - k will become the first element in the slice.

Panics

This function will panic if k is greater than the length of the slice. Note that k == self.len() does not panic and is a no-op rotation.

Complexity

Takes linear (in self.len()) time.

Examples

let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a.rotate_right(2);
assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);

Rotate a subslice:

let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a[1..5].rotate_right(1);
assert_eq!(a, ['a', 'e', 'b', 'c', 'd', 'f']);

Copies the elements from src into self.

The length of src must be the same as self.

If src implements Copy, it can be more performant to use copy_from_slice.

Panics

This function will panic if the two slices have different lengths.

Examples

Cloning two elements from a slice into another:

let src = [1, 2, 3, 4];
let mut dst = [0, 0];

// Because the slices have to be the same length,
// we slice the source slice from four elements
// to two. It will panic if we don't do this.
dst.clone_from_slice(&src[2..]);

assert_eq!(src, [1, 2, 3, 4]);
assert_eq!(dst, [3, 4]);

Rust enforces that there can only be one mutable reference with no immutable references to a particular piece of data in a particular scope. Because of this, attempting to use clone_from_slice on a single slice will result in a compile failure:

This example deliberately fails to compile
let mut slice = [1, 2, 3, 4, 5];

slice[..2].clone_from_slice(&slice[3..]); // compile fail!

To work around this, we can use split_at_mut to create two distinct sub-slices from a slice:

let mut slice = [1, 2, 3, 4, 5];

{
    let (left, right) = slice.split_at_mut(2);
    left.clone_from_slice(&right[1..]);
}

assert_eq!(slice, [4, 5, 3, 4, 5]);

Copies all elements from src into self, using a memcpy.

The length of src must be the same as self.

If src does not implement Copy, use clone_from_slice.

Panics

This function will panic if the two slices have different lengths.

Examples

Copying two elements from a slice into another:

let src = [1, 2, 3, 4];
let mut dst = [0, 0];

// Because the slices have to be the same length,
// we slice the source slice from four elements
// to two. It will panic if we don't do this.
dst.copy_from_slice(&src[2..]);

assert_eq!(src, [1, 2, 3, 4]);
assert_eq!(dst, [3, 4]);

Rust enforces that there can only be one mutable reference with no immutable references to a particular piece of data in a particular scope. Because of this, attempting to use copy_from_slice on a single slice will result in a compile failure:

This example deliberately fails to compile
let mut slice = [1, 2, 3, 4, 5];

slice[..2].copy_from_slice(&slice[3..]); // compile fail!

To work around this, we can use split_at_mut to create two distinct sub-slices from a slice:

let mut slice = [1, 2, 3, 4, 5];

{
    let (left, right) = slice.split_at_mut(2);
    left.copy_from_slice(&right[1..]);
}

assert_eq!(slice, [4, 5, 3, 4, 5]);

🔬 This is a nightly-only experimental API. (copy_within)

Copies elements from one part of the slice to another part of itself, using a memmove.

src is the range within self to copy from. dest is the starting index of the range within self to copy to, which will have the same length as src. The two ranges may overlap. The ends of the two ranges must be less than or equal to self.len().

Panics

This function will panic if either range exceeds the end of the slice, or if the end of src is before the start.

Examples

Copying four bytes within a slice:

let mut bytes = *b"Hello, World!";

bytes.copy_within(1..5, 8);

assert_eq!(&bytes, b"Hello, Wello!");

Swaps all elements in self with those in other.

The length of other must be the same as self.

Panics

This function will panic if the two slices have different lengths.

Example

Swapping two elements across slices:

let mut slice1 = [0, 0];
let mut slice2 = [1, 2, 3, 4];

slice1.swap_with_slice(&mut slice2[2..]);

assert_eq!(slice1, [3, 4]);
assert_eq!(slice2, [1, 2, 0, 0]);

Rust enforces that there can only be one mutable reference to a particular piece of data in a particular scope. Because of this, attempting to use swap_with_slice on a single slice will result in a compile failure:

This example deliberately fails to compile
let mut slice = [1, 2, 3, 4, 5];
slice[..2].swap_with_slice(&mut slice[3..]); // compile fail!

To work around this, we can use split_at_mut to create two distinct mutable sub-slices from a slice:

let mut slice = [1, 2, 3, 4, 5];

{
    let (left, right) = slice.split_at_mut(2);
    left.swap_with_slice(&mut right[1..]);
}

assert_eq!(slice, [4, 5, 3, 1, 2]);

Transmute the slice to a slice of another type, ensuring alignment of the types is maintained.

This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new type, and the suffix slice. The method does a best effort to make the middle slice the greatest length possible for a given type and input slice, but only your algorithm's performance should depend on that, not its correctness.

This method has no purpose when either input element T or output element U are zero-sized and will return the original slice without splitting anything.

Unsafety

This method is essentially a transmute with respect to the elements in the returned middle slice, so all the usual caveats pertaining to transmute::<T, U> also apply here.

Examples

Basic usage:

unsafe {
    let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
    let (prefix, shorts, suffix) = bytes.align_to::<u16>();
    // less_efficient_algorithm_for_bytes(prefix);
    // more_efficient_algorithm_for_aligned_shorts(shorts);
    // less_efficient_algorithm_for_bytes(suffix);
}

Transmute the slice to a slice of another type, ensuring alignment of the types is maintained.

This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new type, and the suffix slice. The method does a best effort to make the middle slice the greatest length possible for a given type and input slice, but only your algorithm's performance should depend on that, not its correctness.

This method has no purpose when either input element T or output element U are zero-sized and will return the original slice without splitting anything.

Unsafety

This method is essentially a transmute with respect to the elements in the returned middle slice, so all the usual caveats pertaining to transmute::<T, U> also apply here.

Examples

Basic usage:

unsafe {
    let mut bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
    let (prefix, shorts, suffix) = bytes.align_to_mut::<u16>();
    // less_efficient_algorithm_for_bytes(prefix);
    // more_efficient_algorithm_for_aligned_shorts(shorts);
    // less_efficient_algorithm_for_bytes(suffix);
}

Checks if all bytes in this slice are within the ASCII range.

Checks that two slices are an ASCII case-insensitive match.

Same as to_ascii_lowercase(a) == to_ascii_lowercase(b), but without allocating and copying temporaries.

Converts this slice to its ASCII upper case equivalent in-place.

ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', but non-ASCII letters are unchanged.

To return a new uppercased value without modifying the existing one, use to_ascii_uppercase.

Converts this slice to its ASCII lower case equivalent in-place.

ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', but non-ASCII letters are unchanged.

To return a new lowercased value without modifying the existing one, use to_ascii_lowercase.

Sorts the slice.

This sort is stable (i.e. does not reorder equal elements) and O(n log n) worst-case.

When applicable, unstable sorting is preferred because it is generally faster than stable sorting and it doesn't allocate auxiliary memory. See sort_unstable.

Current implementation

The current algorithm is an adaptive, iterative merge sort inspired by timsort. It is designed to be very fast in cases where the slice is nearly sorted, or consists of two or more sorted sequences concatenated one after another.

Also, it allocates temporary storage half the size of self, but for short slices a non-allocating insertion sort is used instead.

Examples

let mut v = [-5, 4, 1, -3, 2];

v.sort();
assert!(v == [-5, -3, 1, 2, 4]);

Sorts the slice with a comparator function.

This sort is stable (i.e. does not reorder equal elements) and O(n log n) worst-case.

The comparator function must define a total ordering for the elements in the slice. If the ordering is not total, the order of the elements is unspecified. An order is a total order if it is (for all a, b and c):

  • total and antisymmetric: exactly one of a < b, a == b or a > b is true; and
  • transitive, a < b and b < c implies a < c. The same must hold for both == and >.

For example, while [f64] doesn't implement [Ord] because NaN != NaN, we can use partial_cmp as our sort function when we know the slice doesn't contain a NaN.

let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
floats.sort_by(|a, b| a.partial_cmp(b).unwrap());
assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);

When applicable, unstable sorting is preferred because it is generally faster than stable sorting and it doesn't allocate auxiliary memory. See sort_unstable_by.

Current implementation

The current algorithm is an adaptive, iterative merge sort inspired by timsort. It is designed to be very fast in cases where the slice is nearly sorted, or consists of two or more sorted sequences concatenated one after another.

Also, it allocates temporary storage half the size of self, but for short slices a non-allocating insertion sort is used instead.

Examples

let mut v = [5, 4, 1, 3, 2];
v.sort_by(|a, b| a.cmp(b));
assert!(v == [1, 2, 3, 4, 5]);

// reverse sorting
v.sort_by(|a, b| b.cmp(a));
assert!(v == [5, 4, 3, 2, 1]);

Sorts the slice with a key extraction function.

This sort is stable (i.e. does not reorder equal elements) and O(m n log(m n)) worst-case, where the key function is O(m).

When applicable, unstable sorting is preferred because it is generally faster than stable sorting and it doesn't allocate auxiliary memory. See sort_unstable_by_key.

Current implementation

The current algorithm is an adaptive, iterative merge sort inspired by timsort. It is designed to be very fast in cases where the slice is nearly sorted, or consists of two or more sorted sequences concatenated one after another.

Also, it allocates temporary storage half the size of self, but for short slices a non-allocating insertion sort is used instead.

Examples

let mut v = [-5i32, 4, 1, -3, 2];

v.sort_by_key(|k| k.abs());
assert!(v == [1, 2, -3, 4, -5]);

🔬 This is a nightly-only experimental API. (slice_sort_by_cached_key)

Sorts the slice with a key extraction function.

During sorting, the key function is called only once per element.

This sort is stable (i.e. does not reorder equal elements) and O(m n + n log n) worst-case, where the key function is O(m).

For simple key functions (e.g. functions that are property accesses or basic operations), sort_by_key is likely to be faster.

Current implementation

The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.

In the worst case, the algorithm allocates temporary storage in a Vec<(K, usize)> the length of the slice.

Examples

#![feature(slice_sort_by_cached_key)]
let mut v = [-5i32, 4, 32, -3, 2];

v.sort_by_cached_key(|k| k.to_string());
assert!(v == [-3, -5, 2, 32, 4]);

Important traits for Vec<u8>

Copies self into a new Vec.

Examples

let s = [10, 40, 30];
let x = s.to_vec();
// Here, `s` and `x` can be modified independently.

Important traits for Vec<u8>

🔬 This is a nightly-only experimental API. (repeat_generic_slice)

it's on str, why not on slice?

Creates a vector by repeating a slice n times.

Panics

This function will panic if the capacity would overflow.

Examples

Basic usage:

#![feature(repeat_generic_slice)]

fn main() {
    assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]);
}

A panic upon overflow:

#![feature(repeat_generic_slice)]
fn main() {
    // this will panic at runtime
    b"0123456789abcdef".repeat(usize::max_value());
}

Important traits for Vec<u8>

Returns a vector containing a copy of this slice where each byte is mapped to its ASCII upper case equivalent.

ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', but non-ASCII letters are unchanged.

To uppercase the value in-place, use make_ascii_uppercase.

Important traits for Vec<u8>

Returns a vector containing a copy of this slice where each byte is mapped to its ASCII lower case equivalent.

ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', but non-ASCII letters are unchanged.

To lowercase the value in-place, use make_ascii_lowercase.

Trait Implementations

impl<Pixel, C> Image for ImageBuffer<Pixel, C> where
    C: Deref<Target = [<Pixel as Pixel>::Subpixel]>,
    Pixel: Pixel + 'static,
    <Pixel as Pixel>::Subpixel: 'static, 
[src]

impl<P, Container> IndexMut<(u32, u32)> for ImageBuffer<P, Container> where
    Container: Deref<Target = [<P as Pixel>::Subpixel]> + DerefMut,
    P: Pixel + 'static,
    <P as Pixel>::Subpixel: 'static, 
[src]

impl<P, Container> Deref for ImageBuffer<P, Container> where
    Container: Deref<Target = [<P as Pixel>::Subpixel]>,
    P: Pixel + 'static,
    <P as Pixel>::Subpixel: 'static, 
[src]

The resulting type after dereferencing.

impl<P, Container> GenericImageView for ImageBuffer<P, Container> where
    Container: Deref<Target = [<P as Pixel>::Subpixel]> + Deref,
    P: Pixel + 'static,
    <P as Pixel>::Subpixel: 'static, 
[src]

The type of pixel.

Underlying image type. This is mainly used by SubImages in order to always have a reference to the original image. This allows for less indirections and it eases the use of nested SubImages. Read more

Returns the pixel located at (x, y), ignoring bounds checking.

The width of this image.

The height of this image.

Returns true if this x, y coordinate is contained inside the image.

Important traits for Pixels<'a, I>

Returns an Iterator over the pixels of this image. The iterator yields the coordinates of each pixel along with their value Read more

Returns an subimage that is an immutable view into this image.

impl<P, Container> Clone for ImageBuffer<P, Container> where
    Container: Deref<Target = [<P as Pixel>::Subpixel]> + Clone,
    P: Pixel
[src]

Performs copy-assignment from source. Read more

impl<'a, 'b, Container, FromType, ToType> ConvertBuffer<ImageBuffer<ToType, Vec<<ToType as Pixel>::Subpixel>>> for ImageBuffer<FromType, Container> where
    Container: Deref<Target = [<FromType as Pixel>::Subpixel]>,
    FromType: 'static + Pixel,
    ToType: 'static + Pixel + FromColor<FromType>,
    <FromType as Pixel>::Subpixel: 'static,
    <ToType as Pixel>::Subpixel: 'static, 
[src]

impl<P, Container> DerefMut for ImageBuffer<P, Container> where
    Container: Deref<Target = [<P as Pixel>::Subpixel]> + DerefMut,
    P: Pixel + 'static,
    <P as Pixel>::Subpixel: 'static, 
[src]

impl<P, Container> Debug for ImageBuffer<P, Container> where
    Container: Debug,
    P: Pixel + Debug
[src]

impl<P, Container> Index<(u32, u32)> for ImageBuffer<P, Container> where
    Container: Deref<Target = [<P as Pixel>::Subpixel]>,
    P: Pixel + 'static,
    <P as Pixel>::Subpixel: 'static, 
[src]

The returned type after indexing.

impl<P, Container> GenericImage for ImageBuffer<P, Container> where
    Container: Deref<Target = [<P as Pixel>::Subpixel]> + DerefMut,
    P: Pixel + 'static,
    <P as Pixel>::Subpixel: 'static, 
[src]

Underlying image type. This is mainly used by SubImages in order to always have a reference to the original image. This allows for less indirections and it eases the use of nested SubImages. Read more

Puts a pixel at location (x, y), ignoring bounds checking.

Put a pixel at location (x, y), taking into account alpha channels

DEPRECATED: This method will be removed. Blend the pixel directly instead.

Important traits for MutPixels<'a, I>

Deprecated

: This cannot be implemented safely in Rust. Please use the image buffer directly.

Returns an Iterator over mutable pixels of this image. The iterator yields the coordinates of each pixel along with a mutable reference to them. Read more

Copies all of the pixels from another image into this image. Read more

Returns a subimage that is a view into this image.

Auto Trait Implementations

impl<P, Container> Send for ImageBuffer<P, Container> where
    Container: Send,
    P: Send

impl<P, Container> Sync for ImageBuffer<P, Container> where
    Container: Sync,
    P: Sync

Blanket Implementations

impl<T, U> Into for T where
    U: From<T>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

impl<T> From for T
[src]

impl<T, U> TryFrom for T where
    T: From<U>, 
[src]

🔬 This is a nightly-only experimental API. (try_from)

The type returned in the event of a conversion error.

impl<T> Borrow for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T, U> TryInto for T where
    U: TryFrom<T>, 
[src]

🔬 This is a nightly-only experimental API. (try_from)

The type returned in the event of a conversion error.

impl<T> BorrowMut for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: Any
[src]

impl<T> SetParameter for T
[src]

Sets value as a parameter of self.

impl<V> IntoVec for V
[src]

impl<V> IntoPnt for V
[src]

impl<SS, SP> SupersetOf for SP where
    SS: SubsetOf<SP>, 
[src]

impl<T> Same for T
[src]

Should always be Self